Searched for: school:SOM
Department/Unit:Neuroscience Institute
Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system
Gottesman-Katz, Lena; Latorre, Rocco; Vanner, Stephen; Schmidt, Brian L; Bunnett, Nigel W
Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.
PMID: 33272979
ISSN: 1468-3288
CID: 4694422
A Report of Two Cases: Unlearning Lactic Acidosis
Mohan, Sanjay; Goldfarb, David S; Hoffman, Robert S
INTRODUCTION/BACKGROUND:The term "lactic acidosis" reinforces the misconception that lactate contributes to acidemia. Although it is common to discover an anion gap acidosis with a concomitant elevated lactate concentration, the two are not mutually dependent. CASE REPORT/METHODS:Here we describe two patients exhibiting high lactate concentrations in the setting of metabolic alkalemia. CONCLUSION/CONCLUSIONS:Lactate is not necessarily the direct cause of acid-base disturbances, and there is no fixed relationship between lactate and the anion gap or between lactate and pH. The term "metabolic acidosis with hyperlactatemia" is more specific than "lactic acidosis" and thus more appropriate.
PMCID:8143821
PMID: 34437000
ISSN: 2474-252x
CID: 5066952
Dorsal and ventral mossy cells differ in their axonal projections throughout the dentate gyrus of the mouse hippocampus
Botterill, Justin J; Gerencer, Kathleen J; Vinod, K Yaragudri; Alcantara-Gonzalez, David; Scharfman, Helen E
Glutamatergic hilar mossy cells (MCs) have axons that terminate both near and far from their cell body but stay within the DG, making synapses primarily in the molecular layer. The long-range axons are considered the primary projection, and extend throughout the DG ipsilateral to the soma, and project to the contralateral DG. The specificity of MC axons for the inner molecular layer (IML) has been considered to be a key characteristic of the DG. In the present study, we made the surprising finding that dorsal MC axons are an exception to this rule. We used two mouse lines that allow for Cre-dependent viral labeling of MCs and their axons: dopamine receptor D2 (Drd2-Cre) and calcitonin receptor-like receptor (Crlr-Cre). A single viral injection into the dorsal DG to label dorsal MCs resulted in labeling of MC axons in both the IML and middle molecular layer (MML). Interestingly, this broad termination of dorsal MC axons occurred throughout the septotemporal DG. In contrast, long-range axons of ventral MCs terminated in the IML, consistent with the literature. Taken together, these results suggest that dorsal and ventral MCs differ significantly in their axonal projections. Since MC projections in the ML are thought to terminate primarily on GCs, the results suggest a dorsal-ventral difference in MC activation of GCs. The surprising difference in dorsal and ventral MC projections should therefore be considered when evaluating dorsal-ventral differences in DG function.
PMID: 33600026
ISSN: 1098-1063
CID: 4787032
Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion
Solomon, Eddy; Rigie, David S; Vahle, Thomas; Paška, Jan; Bollenbeck, Jan; Sodickson, Daniel K; Boada, Fernando E; Block, Kai Tobias; Chandarana, Hersh
PURPOSE/OBJECTIVE:To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS:This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS:Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION/CONCLUSIONS:PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.
PMID: 33306216
ISSN: 1522-2594
CID: 4709402
Channelopathies in fragile X syndrome
Deng, Pan-Yue; Klyachko, Vitaly A
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.
PMID: 33828309
ISSN: 1471-0048
CID: 4839432
Good scents: A short road from olfaction to satisfaction
Wilson, Donald A; East, Brett S
We rapidly classify odors as pleasant or aversive, but the brain circuits underlying how odors motivate approach and avoidance responses are largely unknown. New research describes a direct path from the olfactory bulb to ventral striatum driving odor-mediated reward.
PMID: 33905691
ISSN: 1879-0445
CID: 4853222
Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release
Chander, Nisha; Morstein, Johannes; Bolten, Jan S; Shemet, Andrej; Cullis, Pieter R; Trauner, Dirk; Witzigmann, Dominik
Encapsulation of small molecule drugs in long-circulating lipid nanoparticles (LNPs) can reduce toxic side effects and enhance accumulation at tumor sites. A fundamental problem, however, is the slow release of encapsulated drugs from these liposomal systems at the disease site resulting in limited therapeutic benefit. Methods to trigger release at specific sites are highly warranted. Here, it is demonstrated that incorporation of ultraviolet (UV-A) or red-light photoswitchable-phosphatidylcholine analogs (AzoPC and redAzoPC) in conventional LNPs generates photoactivatable LNPs (paLNPs) having comparable structural integrity, drug loading capacity, and size distribution to the parent DSPC-cholesterol liposomes. It is shown that 65-70% drug release (doxorubicin) can be induced from these systems by irradiation with pulsed light based on trans-to-cis azobenzene isomerization. In vitro it is confirmed that paLNPs are non-toxic in the dark but convey cytotoxicity upon irradiation in a human cancer cell line. In vivo studies in zebrafish embryos demonstrate prolonged blood circulation and extravasation of paLNPs comparable to clinically approved formulations, with enhanced drug release following irradiation with pulsed light. Conclusively, paLNPs closely mimic the properties of clinically approved LNPs with the added benefit of light-induced drug release making them promising candidates for clinical development.
PMID: 33880882
ISSN: 1613-6829
CID: 4858792
Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection
Autio, Joonas A; Zhu, Qi; Li, Xiaolian; Glasser, Matthew F; Schwiedrzik, Caspar M; Fair, Damien A; Zimmermann, Jan; Yacoub, Essa; Menon, Ravi S; Van Essen, David C; Hayashi, Takuya; Russ, Brian; Vanduffel, Wim
Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.
PMID: 33882349
ISSN: 1095-9572
CID: 4878072
Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory
Zhang, Yiyao; Cao, Liang; Varga, Viktor; Jing, Miao; Karadas, Mursel; Li, Yulong; Buzsáki, György
Learning and memory are assumed to be supported by mechanisms that involve cholinergic transmission and hippocampal theta. Using G protein-coupled receptor-activation-based acetylcholine sensor (GRABACh3.0) with a fiber-photometric fluorescence readout in mice, we found that cholinergic signaling in the hippocampus increased in parallel with theta/gamma power during walking and REM sleep, while ACh3.0 signal reached a minimum during hippocampal sharp-wave ripples (SPW-R). Unexpectedly, memory performance was impaired in a hippocampus-dependent spontaneous alternation task by selective optogenetic stimulation of medial septal cholinergic neurons when the stimulation was applied in the delay area but not in the central (choice) arm of the maze. Parallel with the decreased performance, optogenetic stimulation decreased the incidence of SPW-Rs. These findings suggest that septo-hippocampal interactions play a task-phase-dependent dual role in the maintenance of memory performance, including not only theta mechanisms but also SPW-Rs.
PMID: 33833054
ISSN: 1091-6490
CID: 4839602
Astrocytes have a license to kill inflammatory TÂ cells
Kwon, Alice H K; Liddelow, Shane A
Microbiome-induced interferon signaling through gut-derived natural killer cells is integral to minimize peripheral inflammatory responses in the brain and spinal cord. In a recent issue of Nature, Sanmarco, Wheeler, et al. define how interferon signaling induces LAMP1+TRAIL+ astrocytes, which cause death of inflammatory T cells, mitigating degeneration in a mouse model of demyealination.
PMID: 33852828
ISSN: 1097-4180
CID: 4862532