Searched for: school:SOM
Department/Unit:Neuroscience Institute
Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory
Zhang, Yiyao; Cao, Liang; Varga, Viktor; Jing, Miao; Karadas, Mursel; Li, Yulong; Buzsáki, György
Learning and memory are assumed to be supported by mechanisms that involve cholinergic transmission and hippocampal theta. Using G protein-coupled receptor-activation-based acetylcholine sensor (GRABACh3.0) with a fiber-photometric fluorescence readout in mice, we found that cholinergic signaling in the hippocampus increased in parallel with theta/gamma power during walking and REM sleep, while ACh3.0 signal reached a minimum during hippocampal sharp-wave ripples (SPW-R). Unexpectedly, memory performance was impaired in a hippocampus-dependent spontaneous alternation task by selective optogenetic stimulation of medial septal cholinergic neurons when the stimulation was applied in the delay area but not in the central (choice) arm of the maze. Parallel with the decreased performance, optogenetic stimulation decreased the incidence of SPW-Rs. These findings suggest that septo-hippocampal interactions play a task-phase-dependent dual role in the maintenance of memory performance, including not only theta mechanisms but also SPW-Rs.
PMID: 33833054
ISSN: 1091-6490
CID: 4839602
Astrocytes
Hasel, Philip; Liddelow, Shane A
Philip Hasel and Shane Liddelow introduce astrocytes - glial cells that help to maintain the homeostasis of the central nervous system during development, normal physiology, and aging.
PMID: 33848482
ISSN: 1879-0445
CID: 4862492
Expediting telehealth use in clinical research studies: recommendations for overcoming barriers in North America
Naito, Anna; Wills, Anne-Marie; Tropea, Thomas F; Ramirez-Zamora, Adolfo; Hauser, Robert A; Martino, Davide; Turner, Travis H; Rafferty, Miriam R; Afshari, Mitra; Williams, Karen L; Vaou, Okeanis; McKeown, Martin J; Ginsburg, Letty; Ezra, Adi; Iansek, Robert; Wallock, Kristin; Evers, Christiana; Schroeder, Karlin; DeLeon, Rebeca; Yarab, Nicole; Alcalay, Roy N; Beck, James C
PMID: 33846349
ISSN: 2373-8057
CID: 4841022
Closed-loop stimulation of the medial septum terminates epileptic seizures
Takeuchi, Yuichi; Harangozó, Márk; Pedraza, Lizeth; Földi, Tamás; Kozák, Gábor; Li, Qun; Berényi, Antal
Temporal lobe epilepsy with distributed hippocampal seizure foci is often intractable and its secondary generalization might lead to sudden death. Early termination through spatially extensive hippocampal intervention is not feasible directly, because of the large size and irregular shape of the hippocampus. In contrast, the medial septum is a promising target to govern hippocampal oscillations through its divergent connections to both hippocampi. Combining this 'proxy intervention' concept and precisely timed stimulation, we report here that closed-loop medial septum electrical stimulation can quickly terminate intrahippocampal seizures and suppress secondary generalization in a rat kindling model. Precise stimulus timing governed by internal seizure rhythms was essential. Cell type-specific stimulation revealed that the precisely timed activation of medial septum GABAergic neurons underlaid the effects. Our concept of time-targeted proxy stimulation for intervening pathological oscillations can be extrapolated to other neurological and psychiatric disorders, and has potential for clinical translation.
PMID: 33501929
ISSN: 1460-2156
CID: 4845152
Deep learning for robust detection of interictal epileptiform discharges
Geng, David; Alkhachroum, Ayham; Melo Bicchi, Manuel; Jagid, Jonathan; Cajigas, Iahn; Chen, Zhe Sage
OBJECTIVE:Automatic detection of interictal epileptiform discharges (IEDs, short as ``spikes'') from an epileptic brain can help predict seizure recurrence and support the diagnosis of epilepsy. Developing fast, reliable and robust detection methods for IEDs based on scalp or intracortical EEG may facilitate online seizure monitoring and closed-loop neurostimulation. APPROACH/METHODS:We developed a new deep learning approach, which employs a long short-term memory (LSTM) network architecture (``IEDnet'') and an auxiliary classifier generative adversarial network (AC-GAN), to train on both expert-annotated and augmented spike events from intracranial electroencephalography (iEEG) recordings of epilepsy patients. We validated our IEDnet with two real-world iEEG datasets, and compared IEDnet with the support vector machine (SVM) and random forest (RF) classifiers on their detection performances. MAIN RESULTS/RESULTS:IEDnet achieved excellent cross-validated detection performances in terms of both sensitivity and specificity, and outperformed SVM and RF. Synthetic spike samples augmented by AC-GAN further improved the detection performance. In addition, the performance of IEDnet was robust with respect to the sampling frequency and noise. Furthermore, we also demonstrated the cross-institutional generalization ability of IEDnet while testing between two datasets. SIGNIFICANCE/CONCLUSIONS:IEDnet achieves excellent detection performances in identifying interictal spikes. AC-GAN can produce augmented iEEG samples to improve supervised deep learning.
PMID: 33770777
ISSN: 1741-2552
CID: 4823682
Post-error recruitment of frontal sensory cortical projections promotes attention in mice
Norman, Kevin J; Riceberg, Justin S; Koike, Hiroyuki; Bateh, Julia; McCraney, Sarah E; Caro, Keaven; Kato, Daisuke; Liang, Ana; Yamamuro, Kazuhiko; Flanigan, Meghan E; Kam, Korey; Falk, Elisa N; Brady, Daniel M; Cho, Christina; Sadahiro, Masato; Yoshitake, Kohei; Maccario, Priscilla; Demars, Michael P; Waltrip, Leah; Varga, Andrew W; Russo, Scott J; Baxter, Mark G; Shapiro, Matthew L; Rudebeck, Peter H; Morishita, Hirofumi
The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACAVIS neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACAVIS neurons in anticipation of visual stimuli is crucial for adjusting performance following errors. 30-Hz optogenetic stimulation of ACAVIS neurons in anesthetized mice recapitulates the increased gamma and reduced theta VIS oscillatory changes that are associated with endogenous post-error performance during behavior and subsequently increased visually evoked spiking, a hallmark feature of visual attention. This frontal sensory neural circuit links error monitoring with implementing adjustments of attention to guide behavioral adaptation, pointing to a circuit-based mechanism for promoting cognitive control.
PMID: 33609483
ISSN: 1097-4199
CID: 4794022
Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron
Hikima, Takuya; Lee, Christian R; Witkovsky, Paul; Chesler, Julia; Ichtchenko, Konstantin; Rice, Margaret E
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
PMID: 33826884
ISSN: 2211-1247
CID: 4839342
Development and characterization of a chronic implant mouse model for vagus nerve stimulation
Mughrabi, Ibrahim T; Hickman, Jordan; Jayaprakash, Naveen; Thompson, Dane; Ahmed, Umair; Papadoyannis, Eleni S; Chang, Yao-Chuan; Abbas, Adam; Datta-Chaudhuri, Timir; Chang, Eric H; Zanos, Theodoros P; Lee, Sunhee C; Froemke, Robert C; Tracey, Kevin J; Welle, Cristin; Al-Abed, Yousef; Zanos, Stavros
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in 4 research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
PMID: 33821789
ISSN: 2050-084x
CID: 4839132
Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies
Fernández-Ruiz, Antonio; Oliva, Azahara; Soula, Marisol; Rocha-Almeida, Florbela; Nagy, Gergo A; Martin-Vazquez, Gonzalo; Buzsáki, György
Gamma oscillations are thought to coordinate the spike timing of functionally specialized neuronal ensembles across brain regions. To test this hypothesis, we optogenetically perturbed gamma spike timing in the rat medial (MEC) and lateral (LEC) entorhinal cortices and found impairments in spatial and object learning tasks, respectively. MEC and LEC were synchronized with the hippocampal dentate gyrus through high- and low-gamma-frequency rhythms, respectively, and engaged either granule cells or mossy cells and CA3 pyramidal cells in a task-dependent manner. Gamma perturbation disrupted the learning-induced assembly organization of target neurons. Our findings imply that pathway-specific gamma oscillations route task-relevant information between distinct neuronal subpopulations in the entorhinal-hippocampal circuit. We hypothesize that interregional gamma-time-scale spike coordination is a mechanism of neuronal communication.
PMID: 33795429
ISSN: 1095-9203
CID: 4838402
Breaking Tradition to Bridge Bench and Bedside: Accelerating the MD-PhD-Residency Pathway
Modrek, Aram S; Tanese, Naoko; Placantonakis, Dimitris G; Sulman, Erik P; Rivera, Rafael; Du, Kevin L; Gerber, Naamit K; David, Gregory; Chesler, Mitchell; Philips, Mark R; Cangiarella, Joan
PROBLEM/OBJECTIVE:Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are, mainly, MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH/METHODS:To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated three-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES/RESULTS:Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by one year and reduces the MD training phase to three years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS/UNASSIGNED:The authors and institutional leaders plan to increase the number of trainees that are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.
PMID: 33464738
ISSN: 1938-808x
CID: 4760452