Searched for: school:SOM
Department/Unit:Neuroscience Institute
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
Longo, Francesco; Mancini, Maria; Ibraheem, Pierre L; Aryal, Sameer; Mesini, Caterina; Patel, Jyoti C; Penhos, Elena; Rahman, Nazia; Mamcarz, Maggie; Santini, Emanuela; Rice, Margaret E; Klann, Eric
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
PMID: 33879865
ISSN: 1476-5578
CID: 4847122
Neurotoxic reactive astrocytes induce cell death via saturated lipids
Guttenplan, Kevin A; Weigel, Maya K; Prakash, Priya; Wijewardhane, Prageeth R; Hasel, Philip; Rufen-Blanchette, Uriel; Münch, Alexandra E; Blum, Jacob A; Fine, Jonathan; Neal, Mikaela C; Bruce, Kimberley D; Gitler, Aaron D; Chopra, Gaurav; Liddelow, Shane A; Barres, Ben A
Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.
PMID: 34616039
ISSN: 1476-4687
CID: 5045852
The commercial genetic testing landscape for Parkinson's disease
Cook, Lola; Schulze, Jeanine; Verbrugge, Jennifer; Beck, James C; Marder, Karen S; Saunders-Pullman, Rachel; Klein, Christine; Naito, Anna; Alcalay, Roy N
INTRODUCTION/BACKGROUND:There have been no specific guidelines regarding which genes should be tested in the clinical setting for Parkinson's disease (PD) or parkinsonism. We evaluated the types of clinical genetic testing offered for PD as the first step of our gene curation. METHODS:The National Institutes of Health (NIH) Genetic Testing Registry (GTR) was queried on 12/7/2020 to identify current commercial PD genetic test offerings by clinical laboratories, internationally. RESULTS:We identified 502 unique clinical genetic tests for PD, from 28 Clinical Laboratory Improvement Amendments (CLIA)-approved clinical laboratories. These included 11 diagnostic PD panels. The panels were notable for their differences in size, ranging from 5 to 62 genes. Five genes for variant query were included in all panels (SNCA, PRKN, PINK-1, PARK7 (DJ1), and LRRK2). Notably, the addition of the VPS35 and GBA genes was variable. Panel size differences stemmed from inclusion of genes linked to atypical parkinsonism and dystonia disorders, and genes in which the link to PD causation is controversial. CONCLUSION/CONCLUSIONS:There is an urgent need for expert opinion regarding which genes should be included in a commercial laboratory multi-gene panel for PD.
PMID: 34696975
ISSN: 1873-5126
CID: 5042312
Comprehensive Genetic Analysis Reveals Complexity of Monogenic Urinary Stone Disease
Cogal, Andrea G; Arroyo, Jennifer; Shah, Ronak Jagdeep; Reese, Kalina J; Walton, Brenna N; Reynolds, Laura M; Kennedy, Gabrielle N; Seide, Barbara M; Senum, Sarah R; Baum, Michelle; Erickson, Stephen B; Jagadeesh, Sujatha; Soliman, Neveen A; Goldfarb, David S; Beara-Lasic, Lada; Edvardsson, Vidar O; Palsson, Runolfur; Milliner, Dawn S; Sas, David J; Lieske, John C; Harris, Peter C
Introduction/UNASSIGNED:Because of phenotypic overlap between monogenic urinary stone diseases (USD), gene-specific analyses can result in missed diagnoses. We used targeted next generation sequencing (tNGS), including known and candidate monogenic USD genes, to analyze suspected primary hyperoxaluria (PH) or Dent disease (DD) patients genetically unresolved (negative; N) after Sanger analysis of the known genes. Cohorts consisted of 285 PH (PHN) and 59 DD (DDN) families. Methods/UNASSIGNED:Variants were assessed using disease-specific and population databases plus variant assessment tools and categorized using the American College of Medical Genetics (ACMG) guidelines. Prior Sanger analysis identified 47 novel PH or DD gene pathogenic variants. Results/UNASSIGNED:accounted for 1 pedigree each. Of the 48 defined pathogenic variants, 27.1% were truncating and 39.6% were novel. Most patients were diagnosed before 18 years of age (76.1%), and 70.3% of biallelic patients were homozygous, mainly from consanguineous families. Conclusion/UNASSIGNED:Overall, in patients suspected of DD or PH, 23.9% and 7.3% of cases, respectively, were caused by pathogenic variants in other genes. This study shows the value of a tNGS screening approach to increase the diagnosis of monogenic USD, which can optimize therapies and facilitate enrollment in clinical trials.
PMCID:8589729
PMID: 34805638
ISSN: 2468-0249
CID: 5063282
Expression and proteolytic processing of the amyloid precursor protein is unaffected by the expression of the three human apolipoprotein E alleles in the brains of mice
Novy, Mariah J; Newbury, Samantha F; Liemisa, Braison; Morales-Corraliza, Jose; Alldred, Melissa J; Ginsberg, Stephen D; Mathews, Paul M
The 3 human apolipoprotein E (APOE) gene alleles modify an individual's risk of developing Alzheimer's disease (AD): compared to the risk-neutral APOE ε3 allele, the ε4 allele (APOE4) is strongly associated with increased AD risk while the ε2 allele is protective. Multiple mechanisms have been shown to link APOE4 expression and AD risk, including the possibility that APOE4 increases the expression of the amyloid precursor protein (APP) (Y-W.A. Huang, B. Zhou, A.M. Nabet, M. Wernig, T.C. Südhof, 2019). In this study, we investigated the impact of APOE genotype on the expression, and proteolytic processing of endogenously expressed APP in the brains of mice humanized for the 3 APOE alleles. In contrast to prior studies using neuronal cultures, we found in the brain that both App gene expression, and the levels of APP holoprotein were not affected by APOE genotype. Additionally, our analysis of APP fragments showed that APOE genotype does not impact APP processing in the brain: the levels of both α- and β-cleaved soluble APP fragments (sAPPs) were similar across genotypes, as were the levels of the membrane-associated α- and β-cleaved C-terminal fragments (CTFs) of APP. Lastly, APOE genotype did not impact the level of soluble amyloid beta (Aβ). These findings argue that the APOE-allele-dependent AD risk is independent of the brain expression and processing of APP.
PMID: 34875506
ISSN: 1558-1497
CID: 5099572
A pilot open-label study of aldose reductase inhibition with AT-001 (caficrestat) in patients hospitalized for COVID-19 infection: Results from a registry-based matched-control analysis
Gaztanaga, Juan; Ramasamy, Ravichandran; Schmidt, Ann Marie; Fishman, Glenn; Schendelman, Shoshana; Thangavelu, Karthinathan; Perfetti, Riccardo; Katz, Stuart D
BACKGROUND AND AIMS/OBJECTIVE:Cardiometabolic disease may confer increased risk of adverse outcomes in COVID-19 patients by activation of the aldose reductase pathway. We hypothesized that aldose reductase inhibition with AT-001 might reduce viral inflammation and risk of adverse outcomes in diabetic patients with COVID-19. METHODS:We conducted an open-label prospective phase 2 clinical trial to assess safety, tolerability and efficacy of AT-001 in patients hospitalized with COVID-19 infection, history of diabetes mellitus and chronic heart disease. Eligible participants were prospectively enrolled and treated with AT-001 1500Â mg BID for up to 14 days. Safety, tolerability, survival and length of hospital stay (LOS) were collected from the electronic medical record and compared with data from two matched control groups (MC1 and MC2) selected from a deidentified registry of COVID-19 patients at the same institution. RESULTS:AT-001 was safe and well tolerated in the 10 participants who received the study drug. In-hospital mortality observed in the AT-001 group was 20% vs. 31% in MC1 and 27% in MC2. Mean LOS observed in the AT-001 group was 5 days vs. 10 days in MC1 and 25 days in MC2. CONCLUSIONS:In hospitalized patients with COVID-19 and co-morbid diabetes mellitus and heart disease, treatment with AT-001 was safe and well tolerated. Exposure to AT-001 was associated with a trend of reduced mortality and shortened LOS. While the observed trend did not reach statistical significance, the present study provides the rationale for investigating potential benefit of AT-001 in COVID 19 affected patients in future studies.
PMCID:8556062
PMID: 34752935
ISSN: 1878-0334
CID: 5050382
Transcriptomic analysis of loss of Gli1 in neural stem cells responding to demyelination in the mouse brain
Samanta, Jayshree; Silva, Hernandez Moura; Lafaille, Juan J; Salzer, James L
In the adult mammalian brain, Gli1 expressing neural stem cells reside in the subventricular zone and their progeny are recruited to sites of demyelination in the white matter where they generate new oligodendrocytes, the myelin forming cells. Remarkably, genetic loss or pharmacologic inhibition of Gli1 enhances the efficacy of remyelination by these neural stem cells. To understand the molecular mechanisms involved, we performed a transcriptomic analysis of this Gli1-pool of neural stem cells. We compared murine NSCs with either intact or deficient Gli1 expression from adult mice on a control diet or on a cuprizone diet which induces widespread demyelination. These data will be a valuable resource for identifying therapeutic targets for enhancing remyelination in demyelinating diseases like multiple sclerosis.
PMCID:8553940
PMID: 34711861
ISSN: 2052-4463
CID: 5042772
A workflow to generate patient-specific three-dimensional augmented reality models from medical imaging data and example applications in urologic oncology
Wake, Nicole; Rosenkrantz, Andrew B; Huang, William C; Wysock, James S; Taneja, Samir S; Sodickson, Daniel K; Chandarana, Hersh
Augmented reality (AR) and virtual reality (VR) are burgeoning technologies that have the potential to greatly enhance patient care. Visualizing patient-specific three-dimensional (3D) imaging data in these enhanced virtual environments may improve surgeons' understanding of anatomy and surgical pathology, thereby allowing for improved surgical planning, superior intra-operative guidance, and ultimately improved patient care. It is important that radiologists are familiar with these technologies, especially since the number of institutions utilizing VR and AR is increasing. This article gives an overview of AR and VR and describes the workflow required to create anatomical 3D models for use in AR using the Microsoft HoloLens device. Case examples in urologic oncology (prostate cancer and renal cancer) are provided which depict how AR has been used to guide surgery at our institution.
PMCID:8554989
PMID: 34709482
ISSN: 2365-6271
CID: 5042602
The human olfactory bulb processes odor valence representation and cues motor avoidance behavior
Iravani, Behzad; Schaefer, Martin; Wilson, Donald A; Arshamian, Artin; Lundström, Johan N
Determining the valence of an odor to guide rapid approach-avoidance behavior is thought to be one of the core tasks of the olfactory system, and yet little is known of the initial neural mechanisms supporting this process or of its subsequent behavioral manifestation in humans. In two experiments, we measured the functional processing of odor valence perception in the human olfactory bulb (OB)-the first processing stage of the olfactory system-using a noninvasive method as well as assessed the subsequent motor avoidance response. We demonstrate that odor valence perception is associated with both gamma and beta activity in the human OB. Moreover, we show that negative, but not positive, odors initiate an early beta response in the OB, a response that is linked to a preparatory neural motor response in the motor cortex. Finally, in a separate experiment, we show that negative odors trigger a full-body motor avoidance response, manifested as a rapid leaning away from the odor, within the time period predicted by the OB results. Taken together, these results demonstrate that the human OB processes odor valence in a sequential manner in both the gamma and beta frequency bands and suggest that rapid processing of unpleasant odors in the OB might underlie rapid approach-avoidance decisions.
PMCID:8545486
PMID: 34645711
ISSN: 1091-6490
CID: 5061982
Decoding pain from brain activity
Chen, Zhe Sage
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
PMID: 34608868
ISSN: 1741-2552
CID: 5039502