Searched for: school:SOM
Department/Unit:Cell Biology
Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells
Wang, Jia; Bhargava, Priyanshu; Yu, Yue; Sari, Anissa Nofita; Zhang, Huayue; Ishii, Noriyuki; Yan, Kangmin; Zhang, Zhenya; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C; Miyako, Eijiro; Wadhwa, Renu
Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.
PMID: 32825706
ISSN: 2072-6694
CID: 4574922
The Function of Tafazzin, a Mitochondrial Phospholipid-Lysophospholipid Acyltransferase
Schlame, Michael; Xu, Yang
Tafazzin is a mitochondrial enzyme that exchanges fatty acids between phospholipids by phospholipid-lysophospholipid transacylation. The reaction alters the molecular species composition and, as a result, the physical properties of lipids. In vivo, the most important substrate of tafazzin is the mitochondria-specific lipid cardiolipin. Tafazzin mutations cause the human disease Barth syndrome, which presents with cardiomyopathy, skeletal muscle weakness, fatigue, and other symptoms, probably all related to mitochondrial dysfunction. The reason why mitochondria require tafazzin is still not known but recent evidence suggests that tafazzin may lower the energy cost associated with protein crowding in the inner mitochondrial membrane.
PMID: 32234310
ISSN: 1089-8638
CID: 4370322
Targeting Piezo1 unleashes innate immunity against cancer and infectious disease
Aykut, Berk; Chen, Ruonan; Kim, Jacqueline I; Wu, Dongling; Shadaloey, Sorin A A; Abengozar, Raquel; Preiss, Pamela; Saxena, Anjana; Pushalkar, Smruti; Leinwand, Joshua; Diskin, Brian; Wang, Wei; Werba, Gregor; Berman, Matthew; Lee, Steve Ki Buom; Khodadadi-Jamayran, Alireza; Saxena, Deepak; Coetzee, William A; Miller, George
Piezo1 is a mechanosensitive ion channel that has gained recognition for its role in regulating diverse physiological processes. However, the influence of Piezo1 in inflammatory disease, including infection and tumor immunity, is not well studied. We postulated that Piezo1 links physical forces to immune regulation in myeloid cells. We found signal transduction via Piezo1 in myeloid cells and established this channel as the primary sensor of mechanical stress in these cells. Global inhibition of Piezo1 with a peptide inhibitor was protective against both cancer and septic shock and resulted in a diminution in suppressive myeloid cells. Moreover, deletion of Piezo1 in myeloid cells protected against cancer and increased survival in polymicrobial sepsis. Mechanistically, we show that mechanical stimulation promotes Piezo1-dependent myeloid cell expansion by suppressing the retinoblastoma gene Rb1 We further show that Piezo1-mediated silencing of Rb1 is regulated via up-regulation of histone deacetylase 2. Collectively, our work uncovers Piezo1 as a targetable immune checkpoint that drives immunosuppressive myelopoiesis in cancer and infectious disease.
PMID: 32826342
ISSN: 2470-9468
CID: 4567692
Zinc induced structural changes in the intrinsically disordered BDNF Met prodomain confer synaptic elimination
Wang, Jing; Anastasia, Agustin; Bains, Henrietta; Giza, Joanna I; Clossey, David G; Deng, Jingjing; Neubert, Thomas A; Rice, William J; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay
Human brain derived neurotrophic factor (BDNF) encodes a protein product consisting of a C-terminal mature domain (mature BDNF) and an N-terminal prodomain, which is an intrinsically disordered protein. A common single nucleotide polymorphism in humans results in a methionine substitution for valine at position 66 of the prodomain, and is associated with memory deficits, depression and anxiety disorders. The BDNF Met66 prodomain, but not the Val66 prodomain, promotes rapid structural remodeling of hippocampal neurons' growth cones and dendritic spines by interacting directly with the SorCS2 receptor. While it has been reported that the Met66 and Val66 prodomains exhibit only modest differences in structural propensities in the apo state, here we show that Val66 and Met66 prodomains differentially bind zinc (Zn). Zn2+ binds with higher affinity and more broadly impacts residues on the Met66 prodomain compared to the Val66 prodomain as shown by NMR and ITC. Zn2+ binding to the Met66 and Val66 prodomains results in distinct conformational and macroscopic differences observed by NMR, light scattering and cryoEM. To determine if Zn2+ mediated conformational change in the Met66 prodomain is required for biological effect, we mutated His40, a Zn2+ binding site, and observed a loss of Met66 prodomain bioactivity. As the His40 site is distant from the known region of the prodomain involved in receptor binding, we suggest that Met66 prodomain bioactivity involves His40 mediated stabilization of the multimeric structure. Our results point to the necessity of a Zn2+-mediated higher order molecular assembly of the Met66 prodomain to mediate neuronal remodeling.
PMID: 32744273
ISSN: 1756-591x
CID: 4704002
Crosstalk Between the Heart and Cancer: Beyond Drug Toxicity [Editorial]
Moslehi, Javid; Zhang, Qing; Moore, Kathryn J
PMCID:7436939
PMID: 32804565
ISSN: 1524-4539
CID: 4581382
Elucidating the fundamental fibrotic processes driving abdominal adhesion formation
Foster, Deshka S; Marshall, Clement D; Gulati, Gunsagar S; Chinta, Malini S; Nguyen, Alan; Salhotra, Ankit; Jones, R Ellen; Burcham, Austin; Lerbs, Tristan; Cui, Lu; King, Megan E; Titan, Ashley L; Ransom, R Chase; Manjunath, Anoop; Hu, Michael S; Blackshear, Charles P; Mascharak, Shamik; Moore, Alessandra L; Norton, Jeffrey A; Kin, Cindy J; Shelton, Andrew A; Januszyk, Michael; Gurtner, Geoffrey C; Wernig, Gerlinde; Longaker, Michael T
Adhesions are fibrotic scars that form between abdominal organs following surgery or infection, and may cause bowel obstruction, chronic pain, or infertility. Our understanding of adhesion biology is limited, which explains the paucity of anti-adhesion treatments. Here we present a systematic analysis of mouse and human adhesion tissues. First, we show that adhesions derive primarily from the visceral peritoneum, consistent with our clinical experience that adhesions form primarily following laparotomy rather than laparoscopy. Second, adhesions are formed by poly-clonal proliferating tissue-resident fibroblasts. Third, using single cell RNA-sequencing, we identify heterogeneity among adhesion fibroblasts, which is more pronounced at early timepoints. Fourth, JUN promotes adhesion formation and results in upregulation of PDGFRA expression. With JUN suppression, adhesion formation is diminished. Our findings support JUN as a therapeutic target to prevent adhesions. An anti-JUN therapy that could be applied intra-operatively to prevent adhesion formation could dramatically improve the lives of surgical patients.
PMID: 32792541
ISSN: 2041-1723
CID: 4556712
TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci
Davis, Erica E; Balasubramanian, Ravikumar; Kupchinsky, Zachary A; Keefe, David L; Plummer, Lacey; Khan, Kamal; Meczekalski, Blazej; Heath, Karen E; Lopez-Gonzalez, Vanesa; Ballesta-Martinez, Mary J; Margabanthu, Gomathi; Price, Susan; Greening, James; Brauner, Raja; Valenzuela, Irene; Cusco, Ivon; Fernandez-Alvarez, Paula; Wierman, Margaret E; Li, Taibo; Lage, Kasper; Barroso, Priscila Sales; Chan, Yee-Ming; Crowley, William F; Katsanis, Nicholas
Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD). Here we report thirteen families (twelve autosomal dominant, and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome; KS) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12; and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD; highlight the genetic links between craniofacial patterning and GnRH dysfunction; and begin to assemble the functional network that regulates the development of the GnRH axis.
PMID: 32620954
ISSN: 1460-2083
CID: 4518222
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis
Corciulo, Carmen; Castro, Cristina M; Coughlin, Thomas; Jacob, Samson; Li, Zhu; Fenyö, David; Rifkin, Daniel B; Kennedy, Oran D; Cronstein, Bruce Neil
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
PMCID:7418027
PMID: 32778777
ISSN: 2045-2322
CID: 4556132
Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells
Shwartz, Yulia; Gonzalez-Celeiro, Meryem; Chen, Chih-Lung; Pasolli, H Amalia; Sheu, Shu-Hsien; Fan, Sabrina Mai-Yi; Shamsi, Farnaz; Assaad, Steven; Lin, Edrick Tai-Yu; Zhang, Bing; Tsai, Pai-Chi; He, Megan; Tseng, Yu-Hua; Lin, Sung-Jan; Hsu, Ya-Chieh
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
PMID: 32679029
ISSN: 1097-4172
CID: 5150532
Pushing myelination: developmental regulation of myosin expression drives oligodendrocyte morphological differentiation
Domingues, Helena Sofia; Urbanski, Mateusz M; Macedo-Ribeiro, Sandra; Almaktari, Amr; Irfan, Azka; Hernandez, Yamely; Wang, Haibo; Relvas, João Bettencourt; Rubinstein, Boris; Melendez-Vasquez, Carmen V; Pinto, Inês Mendes
Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher order neuronal circuitry. The mechanical forces driving oligodendrocyte precursor cells differentiation into myelinating oligodendrocytes are largely unknown but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, that potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.
PMID: 32620697
ISSN: 1477-9137
CID: 4518572