Searched for: school:SOM
Department/Unit:Cell Biology
Venture investment in medical artificial intelligence amidst technological milestones and global shifts: 2013"“2023
Jairath, Neil K.; Ramachandran, Vignesh; Orlow, Seth J.
The integration of artificial intelligence (AI) in healthcare, known herein as Medical AI, has seen a remarkable increase in attention over the last few years. This study aims to provide a comprehensive analysis of the trends in venture funding in the medical AI sector in comparison to venture funding in healthcare and AI as a whole over the past decade, using data from the Pitchbook financial database, and its implications for the future of healthcare quality and delivery. An extensive review of venture investments in healthcare, AI, and medical AI (the overlap between healthcare and AI) sectors was conducted for a 10-year period from October 7, 2013 to October 6, 2023. The study used Pitchbook"™s database to catalogue deals across various stages, round numbers, and series, inclusive of all ownership models and geographic locations. The analysis focused on completed transactions, extracting descriptive statistics for deal flow, capital flow, and post-funding valuations while analyzing trends. The study found that the medical AI sector experienced a higher year-over-year growth in deal volume (P=0.01 compared to healthcare, P=0.08 compared to AI) and capital flow (P=0.01 compared to healthcare and P=0.03 compared to AI) over this time period, with all sectors witnessing a sharp stimulus during the coronavirus disease 2019 (COVID-19) stimulus period, alongside marked increases at the time of introduction of seminal AI technologies. This was followed by marked drawdowns with the onset of high inflation and high interest rates. Early-stage funding was dominant in medical AI, indicating a market leaning towards emerging technologies. Despite a decrease in total deal volume in recent years, there was a steady increase in median deal sizes and valuations, highlighting the sector"™s resilience and perceived value. The findings suggest that medical AI is a rapidly growing sector with significant investor interest, particularly in early-stage ventures. The findings align with the early stages of a valuation bubble, though the sector thus far has shown resilience and value growth despite broader economic fluctuations and reduced deal volume, indicating a selective yet robust investment environment.
SCOPUS:85203387174
ISSN: 2617-2496
CID: 5714782
Agonist antibody to MuSK protects mice from MuSK myasthenia gravis
Oury, Julien; Gamallo-Lana, Begona; Santana, Leah; Steyaert, Christophe; Vergoossen, Dana L E; Mar, Adam C; Vankerckhoven, Bernhardt; Silence, Karen; Vanhauwaert, Roeland; Huijbers, Maartje G; Burden, Steven J
Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.
PMCID:11441477
PMID: 39288173
ISSN: 1091-6490
CID: 5714062
Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration
Jiang, Ying; Sachdeva, Kuldeep; Goulbourne, Chris N; Berg, Martin J; Peddy, James; Stavrides, Philip H; Pensalfini, Anna; Pawlik, Monika; Whyte, Lauren; Balapal, Basavaraj S; Shivakumar, Subbanna; Bleiwas, Cynthia; Smiley, John F; Mathews, Paul M; Nixon, Ralph A
UNLABELLED:Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption. SIGNIFICANCE STATEMENT/UNASSIGNED:Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
PMCID:11430014
PMID: 39345644
ISSN: 2692-8205
CID: 5845182
Structural insights into the diversity and DNA cleavage mechanism of Fanzor
Xu, Peiyu; Saito, Makoto; Faure, Guilhem; Maguire, Samantha; Chau-Duy-Tam Vo, Samuel; Wilkinson, Max E; Kuang, Huihui; Wang, Bing; Rice, William J; Macrae, Rhiannon K; Zhang, Feng
Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.
PMCID:11423790
PMID: 39208796
ISSN: 1097-4172
CID: 5719322
ARGX-119 is an agonist antibody for human MuSK that reverses disease relapse in a mouse model of congenital myasthenic syndrome
Vanhauwaert, Roeland; Oury, Julien; Vankerckhoven, Bernhardt; Steyaert, Christophe; Jensen, Stine Marie; Vergoossen, Dana L E; Kneip, Christa; Santana, Leah; Lim, Jamie L; Plomp, Jaap J; Augustinus, Roy; Koide, Shohei; Blanchetot, Christophe; Ulrichts, Peter; Huijbers, Maartje G; Silence, Karen; Burden, Steven J
Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of DOK7 CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult Dok7 CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.
PMID: 39292800
ISSN: 1946-6242
CID: 5721242
Boosting the toolbox for live imaging of translation
Bellec, Maëlle; Chen, Ruoyu; Dhayni, Jana; Trullo, Antonello; Avinens, Damien; Karaki, Hussein; Mazzarda, Flavia; Lenden-Hasse, Helene; Favard, Cyril; Lehmann, Ruth; Bertrand, Edouard; Lagha, Mounia; Dufourt, Jeremy
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
PMCID:11404453
PMID: 39060168
ISSN: 1469-9001
CID: 5713952
Autophagy-lysosomal-associated neuronal death in neurodegenerative disease
Nixon, Ralph A
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
PMID: 39259382
ISSN: 1432-0533
CID: 5690402
Numerical model for electrogenic transport by the ATP-dependent potassium pump KdpFABC
Hussein, Adel; Zhang, Xihui; Stokes, David L
In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.
PMCID:11304011
PMID: 38950825
ISSN: 2667-0747
CID: 5689652
Progranulin mediates the onset of pristane induced systemic lupus erythematosus
He, Michun; Hettinghouse, Aubryanna; Bi, Yufei; Chen, Yuehong; Liu, Chuanju
BACKGROUNDS/BACKGROUND:Progranulin (PGRN) is a growth factor-like molecule with diverse roles in homeostatic and pathogenic processes including the control of immune and inflammatory responses. Pathogenic inflammation is a hallmark of systemic lupus erythematosus (SLE) and elevated serum levels of PGRN has been evaluated as a biomarker of disease activity in SLE. However, the role of PGRN in SLE has not been fully investigated. This study is aimed to determine the potential involvements of PGRN in SLE. METHODS:) C57BL/6 mice received intraperitoneal injection of pristane for induction of a murine model of SLE. Sera were collected every biweekly and levels of anti-dsDNA antibody, IgG, and inflammatory factors were measured. Mice were sacrificed 5 months later and the renal lesions, as well as the proportions of T cell subtypes in the spleen were analyzed. RESULTS:mouse kidneys had less IgG and collagen deposition compared with WT mice after pristane injection. CONCLUSION/CONCLUSIONS:The results indicate that PGRN participates in inflammatory response and renal damage in pristane induced SLE models, suggesting that PGRN mediates the onset of SLE.
PMID: 39252120
ISSN: 2523-3106
CID: 5690112
Discovery of a novel inhibitor of macropinocytosis with antiviral activity
Porebski, Bartlomiej; Christ, Wanda; Corman, Alba; Haraldsson, Martin; Barz, Myriam; Lidemalm, Louise; Häggblad, Maria; Ilmain, Juliana; Wright, Shane C; Murga, Matilde; Schlegel, Jan; Jarvius, Malin; Lapins, Maris; Sezgin, Erdinc; Bhabha, Gira; Lauschke, Volker M; Carreras-Puigvert, Jordi; Lafarga, Miguel; Klingström, Jonas; Hühn, Daniela; Fernandez-Capetillo, Oscar
Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.
PMID: 38956870
ISSN: 1525-0024
CID: 5687122