Searched for: school:SOM
Department/Unit:Cell Biology
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis
Corciulo, Carmen; Castro, Cristina M; Coughlin, Thomas; Jacob, Samson; Li, Zhu; Fenyö, David; Rifkin, Daniel B; Kennedy, Oran D; Cronstein, Bruce Neil
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
PMCID:7418027
PMID: 32778777
ISSN: 2045-2322
CID: 4556132
Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells
Shwartz, Yulia; Gonzalez-Celeiro, Meryem; Chen, Chih-Lung; Pasolli, H Amalia; Sheu, Shu-Hsien; Fan, Sabrina Mai-Yi; Shamsi, Farnaz; Assaad, Steven; Lin, Edrick Tai-Yu; Zhang, Bing; Tsai, Pai-Chi; He, Megan; Tseng, Yu-Hua; Lin, Sung-Jan; Hsu, Ya-Chieh
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
PMID: 32679029
ISSN: 1097-4172
CID: 5150532
Pushing myelination: developmental regulation of myosin expression drives oligodendrocyte morphological differentiation
Domingues, Helena Sofia; Urbanski, Mateusz M; Macedo-Ribeiro, Sandra; Almaktari, Amr; Irfan, Azka; Hernandez, Yamely; Wang, Haibo; Relvas, João Bettencourt; Rubinstein, Boris; Melendez-Vasquez, Carmen V; Pinto, Inês Mendes
Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher order neuronal circuitry. The mechanical forces driving oligodendrocyte precursor cells differentiation into myelinating oligodendrocytes are largely unknown but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, that potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.
PMID: 32620697
ISSN: 1477-9137
CID: 4518572
Disulfiram Treatment Normalizes Body Weight in Obese Mice
Bernier, Michel; Mitchell, Sarah J; Wahl, Devin; Diaz, Antonio; Singh, Abhishek; Seo, Wonhyo; Wang, Mingy; Ali, Ahmed; Kaiser, Tamzin; Price, Nathan L; Aon, Miguel A; Kim, Eun-Young; Petr, Michael A; Cai, Huan; Warren, Alessa; Di Germanio, Clara; Di Francesco, Andrea; Fishbein, Ken; Guiterrez, Vince; Harney, Dylan; Koay, Yen Chin; Mach, John; Enamorado, Ignacio Navas; Pulpitel, Tamara; Wang, Yushi; Zhang, Jing; Zhang, Li; Spencer, Richard G; Becker, Kevin G; Egan, Josephine M; Lakatta, Edward G; O'Sullivan, John; Larance, Mark; LeCouteur, David G; Cogger, Victoria C; Gao, Bin; Fernandez-Hernando, Carlos; Cuervo, Ana Maria; de Cabo, Rafael
Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.
PMID: 32413333
ISSN: 1932-7420
CID: 4431742
RNAscope and BaseScopeTM: In-situ RNA analysis for formalin-fixed paraffin-embedded tissues and beyond
Selvaraj, S; Mezzano, V; Loomis, C
In-situ hybridization (ISH) analysis is a highly desirable, versatile approach for assessing biomarker expression status in a spatial context. Most researchers rely on immunostaining (protein targets) or qPCR (mRNA). However, not all proteins can be immunolabeled due to a lack of well-validated antibodies. The qPCR approach, although highly specific, cannot provide spatial information. RNAscope employs a unique double Z probe that has to bind to the target RNA in tandem in order to be recognized by the preamplifiers and amplifiers. A fluorescent/chromogenic labeled probe then binds to the multiple binding sites of the amplifiers, which improves detection of low expressing RNA and reduces non-specific binding. RNAscope replaces cumbersome radioactive and chromogenic ISH with more hassle-free chromogen and fluorescence-labelled probes. At the NYULMC Experimental Pathology Core we have integrated RNAscope with Polaris multispectral imaging and quantitative analysis using different software platforms. About 21 laboratories have used this workflow to address their specific questions. We have also established and validated the newer BaseScopeTM assay. In contrast to RNAscope, which targets lncRNA and mRNA sequences greater than 300nt, BaseScopeTM enables detection of short RNA target sequences between 50-300nt. It can be used to detect exon junctions/splice variants, circular RNA, pre-miRNA, and point mutations. We adapted BaseScopeTM to co-detect circular RNA and its linear counterpart in a differentiating cell population, which could not be established on glass chamber slides and had to be stained on a plastic petri dish. In conclusion, RNAscope and BaseScopeTM RNA-ISH are powerful alternative strategies for assessing the spatial distribution of critical biomarkers within intact tissues and cells. This approach coupled with sophisticated imaging modalities and downstream analysis support provides new collaborative opportunities for Core aboratories.
Copyright
EMBASE:632680786
ISSN: 1943-4731
CID: 4584782
A doubly auxotrophic CHO-K1 cell line for the production of recombinant monoclonal antibodies
Zhang, Qinghao; Jiang, Bo; Du, Zhimei; Chasin, Lawrence A
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production due to their hardiness, ease of transfection, and production of glycan structures similar to those in natural human monoclonal antibodies. To enhance the usefulness of CHO-K1 cells we developed a new selection system based on double auxotrophy. We used CRISPR-Cas9 to knockout the genes that encode the bifunctional enzymes catalyzing the last two steps in the de novo synthesis of pyrimidines and purines (uridine monophosphate synthase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase [ATIC], respectively). Survival of these doubly auxotrophic cells depends on the provision of sources of purines and pyrimidines or on the transfection and integration of open reading frames encoding these two enzymes. We successfully used one such double auxotroph (UA10) to select for stable transfectants carrying (a) the recombinant tumor necrosis factor-α receptor fusion protein etanercept and (b) the heavy and light chains of the anti-Her2 monoclonal antibody trastuzumab. Transfectant clones produced these recombinant proteins in a stable manner and in substantial amounts. The availability of this double auxotroph provides a rapid and efficient selection method for the serial or simultaneous transfer of genes for multiple polypeptides of choice into CHO cells using readily available purine- and pyrimidine-free commercial media.
PMID: 32346859
ISSN: 1097-0290
CID: 4443462
Characteristics and Outcomes of 241 Births to Women With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection at Five New York City Medical Centers
Khoury, Rasha; Bernstein, Peter S; Debolt, Chelsea; Stone, Joanne; Sutton, Desmond M; Simpson, Lynn L; Limaye, Meghana A; Roman, Ashley S; Fazzari, Melissa; Penfield, Christina A; Ferrara, Lauren; Lambert, Calvin; Nathan, Lisa; Wright, Rodney; Bianco, Angela; Wagner, Brian; Goffman, Dena; Gyamfi-Bannerman, Cynthia; Schweizer, William E; Avila, Karina; Khaksari, Bijan; Proehl, Meghan; Heitor, Fabiano; Monro, Johanna; Keefe, David L; DʼAlton, Mary E; Brodman, Michael; Makhija, Sharmila K; Dolan, Siobhan M
OBJECTIVE:To describe the characteristics and birth outcomes of women with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as community spread in New York City was detected in March 2020. METHODS:We performed a prospective cohort study of pregnant women with laboratory-confirmed SARS-CoV-2 infection who gave birth from March 13 to April 12, 2020, identified at five New York City medical centers. Demographic and clinical data from delivery hospitalization records were collected, and follow-up was completed on April 20, 2020. RESULTS:Among this cohort (241 women), using evolving criteria for testing, 61.4% of women were asymptomatic for coronavirus disease 2019 (COVID-19) at the time of admission. Throughout the delivery hospitalization, 26.5% of women met World Health Organization criteria for mild COVID-19, 26.1% for severe, and 5% for critical. Cesarean birth was the mode of delivery for 52.4% of women with severe and 91.7% with critical COVID-19. The singleton preterm birth rate was 14.6%. Admission to the intensive care unit was reported for 17 women (7.1%), and nine (3.7%) were intubated during their delivery hospitalization. There were no maternal deaths. Body mass index (BMI) 30 or higher was associated with COVID-19 severity (P=.001). Nearly all newborns tested negative for SARS-CoV-2 infection immediately after birth (97.5%). CONCLUSION/CONCLUSIONS:During the first month of the SARS-CoV-2 outbreak in New York City and with evolving testing criteria, most women with laboratory-confirmed infection admitted for delivery did not have symptoms of COVID-19. Almost one third of women who were asymptomatic on admission became symptomatic during their delivery hospitalization. Obesity was associated with COVID-19 severity. Disease severity was associated with higher rates of cesarean and preterm birth.
PMID: 32555034
ISSN: 1873-233x
CID: 4485172
The pHLIP system as a vehicle for microRNAs in the kidney
Miguel, Verónica; Rey, Carlos; Aceña, José Luis; Maqueda, Francisco; Fernández-Hernando, Carlos; RodrÃguez-Puyol, Diego; Vaquero, Juan J; Lamas, Santiago
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.
PMID: 32693933
ISSN: 1989-2284
CID: 4532262
Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model
Henn, Dominic; Chen, Kellen; Maan, Zeshaan N; Greco, Autumn H; Moortgat Illouz, Sylvia E; Bonham, Clark A; Barrera, Janos A; Trotsyuk, Artem A; Padmanabhan, Jagannath; Momeni, Arash; Wan, Derrick C; Nguyen, Dung; Januszyk, Michael; Gurtner, Geoffrey C
Cryopreserved human skin allografts (CHSAs) are used for the coverage of major burns when donor sites for autografts are insufficiently available and have clinically shown beneficial effects on chronic non-healing wounds. However, the biologic mechanisms behind the regenerative properties of CHSA remain elusive. Furthermore, the impact of cryopreservation on the immunogenicity of CHSA has not been thoroughly investigated and raised concerns with regard to their clinical application. To investigate the importance and fate of living cells, we compared cryopreserved CHSA with human acellular dermal matrix (ADM) grafts in which living cells had been removed by chemical processing. Both grafts were subcutaneously implanted into C57BL/6 mice and explanted after 1, 3, 7, and 28 days (n = 5 per group). A sham surgery where no graft was implanted served as a control. Transmission electron microscopy (TEM) and flow cytometry were used to characterise the ultrastructure and cells within CHSA before implantation. Immunofluorescent staining of tissue sections was used to determine the immune reaction against the implanted grafts, the rate of apoptotic cells, and vascularisation as well as collagen content of the overlaying murine dermis. Digital quantification of collagen fibre alignment on tissue sections was used to quantify the degree of fibrosis within the murine dermis. A substantial population of live human cells with intact organelles was identified in CHSA prior to implantation. Subcutaneous pockets with implanted xenografts or ADMs healed without clinically apparent rejection and with a similar cellular immune response. CHSA implantation largely preserved the cellularity of the overlying murine dermis, whereas ADM was associated with a significantly higher rate of cellular apoptosis, identified by cleaved caspase-3 staining, and a stronger dendritic cell infiltration of the murine dermis. CHSA was found to induce a local angiogenic response, leading to significantly more vascularisation of the murine dermis compared with ADM and sham surgery on day 7. By day 28, aggregate collagen-1 content within the murine dermis was greater following CHSA implantation compared with ADM. Collagen fibre alignment of the murine dermis, correlating with the degree of fibrosis, was significantly greater in the ADM group, whereas CHSA maintained the characteristic basket weave pattern of the native murine dermis. Our data indicate that CHSAs promote angiogenesis and collagen-1 production without eliciting a significant fibrotic response in a xenograft model. These findings may provide insight into the beneficial effects clinically observed after treatment of chronic wounds and burns with CHSA.
PMID: 32227459
ISSN: 1742-481x
CID: 4370032
Telomere erosion as a placental clock: From placental pathologies to adverse pregnancy outcomes
Kohlrausch, Fabiana B; Keefe, David L
The placenta provides nutritional and gas exchange between fetus and mother. Early in pregnancy, placental trophoblasts proliferate rapidly and invade aggressively. As pregnancy progresses, placental cells begin to age. Indeed, pregnancy itself has a tightly regulated duration, determined in large part by placental lifespan. Late in pregnancy, placental cells reach a senescent apoptotic state, activated by a number of intrinsic and extrinsic factors, including oxidative stress (OS), and DNA damage. Pregnancy complications, stillbirths and neonatal deaths have been related to OS and abnormal placental aging. Telomeres, the protective nucleoprotein structures at the ends of linear chromosomes, shorten both from cell replication and from exposure to OS. When telomeres become critically short they trigger cell cycle arrest and eventually cell death. Telomere attrition thus provide an intrinsic mechanism to explain tissue senescence and aging. Mounting evidence suggests that senescence of placental and fetal membrane cells results from telomere attrition. We review the studies that have addressed the role of telomere length (TL) in placentas from normal and complicated pregnancies, including pre-eclampsia, intrauterine growth restriction, gestational diabetes, and stillbirth. To date studies have uncovered associations between TL and a number of obstetrical complications. Future research is needed to determine whether these associations are causative, i.e. whether these clinical conditions result from telomere dysfunction, and whether particular features of telomeres, e.g. mean or shortest length, etc. could serve as clinically useful biomarkers of placental health.
PMID: 32792055
ISSN: 1532-3102
CID: 4556702