Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13340


Post-exposure environment modulates long-term developmental ethanol effects on behavior, neuroanatomy, and cortical oscillations

Apuzzo, Justin; Saito, Mariko; Wilson, Donald A
Developmental exposure to ethanol has a wide range of anatomical, cellular, physiological and behavioral impacts that can last throughout life. In humans, this cluster of effects is termed fetal alcohol spectrum disorder and is highly prevalent in western cultures. The ultimate expression of the effects of developmental ethanol exposure however can be influenced by post-exposure experience. Here we examined the effects of developmental binge exposure to ethanol (postnatal day 7) in C57BL/6By mice on a specific cohort of inter-related long-term outcomes including contextual memory, hippocampal parvalbumin-expressing neuron density, frontal cortex oscillations related to sleep-wake cycling including delta oscillation amplitude and sleep spindle density, and home-cage behavioral activity. When assessed in adults that were raised in standard housing, all of these factors were altered by early ethanol exposure compared to saline controls except home-cage activity. However, exposure to an enriched environment and exercise from weaning to postnatal day 90 reversed most of these ethanol-induced impairments including memory, CA1 but not dentate gyrus PV+ cell density, delta oscillations and sleep spindles, and enhanced home-cage behavioral activity in Saline- but not EtOH-treated mice. The results are discussed in terms of the inter-dependence of diverse developmental ethanol outcomes and potential mechanisms of post-exposure experiences to regulate those outcomes.
PMID: 32950485
ISSN: 1872-6240
CID: 4609652

Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function

Gruber, Conor N; Calis, Jorg J A; Buta, Sofija; Evrony, Gilad; Martin, Jerome C; Uhl, Skyler A; Caron, Rachel; Jarchin, Lauren; Dunkin, David; Phelps, Robert; Webb, Bryn D; Saland, Jeffrey M; Merad, Miriam; Orange, Jordan S; Mace, Emily M; Rosenberg, Brad R; Gelb, Bruce D; Bogunovic, Dusan
Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.
PMCID:7398039
PMID: 32750333
ISSN: 1097-4180
CID: 4614282

Photoswitchable paclitaxel-based microtubule stabilisers allow optical control over the microtubule cytoskeleton

Müller-Deku, Adrian; Meiring, Joyce C M; Loy, Kristina; Kraus, Yvonne; Heise, Constanze; Bingham, Rebekkah; Jansen, Klara I; Qu, Xiaoyi; Bartolini, Francesca; Kapitein, Lukas C; Akhmanova, Anna; Ahlfeld, Julia; Trauner, Dirk; Thorn-Seshold, Oliver
Small molecule inhibitors are prime reagents for studies in microtubule cytoskeleton research, being applicable across a range of biological models and not requiring genetic engineering. However, traditional chemical inhibitors cannot be experimentally applied with spatiotemporal precision suiting the length and time scales inherent to microtubule-dependent cellular processes. We have synthesised photoswitchable paclitaxel-based microtubule stabilisers, whose binding is induced by photoisomerisation to their metastable state. Photoisomerising these reagents in living cells allows optical control over microtubule network integrity and dynamics, cell division and survival, with biological response on the timescale of seconds and spatial precision to the level of individual cells within a population. In primary neurons, they enable regulation of microtubule dynamics resolved to subcellular regions within individual neurites. These azobenzene-based microtubule stabilisers thus enable non-invasive, spatiotemporally precise modulation of the microtubule cytoskeleton in living cells, and promise new possibilities for studying intracellular transport, cell motility, and neuronal physiology.
PMCID:7493900
PMID: 32934232
ISSN: 2041-1723
CID: 4617582

Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder

Wilson, Hayley A; Creighton, Carolyn; Scharfman, Helen; Choleris, Elena; MacLusky, Neil J
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
PMID: 32912048
ISSN: 1089-4098
CID: 4598212

Characterization of Persistent Uncontrolled Asthma Symptoms in Community Members Exposed to World Trade Center Dust and Fumes

Reibman, Joan; Caplan-Shaw, Caralee; Wu, Yinxiang; Liu, Mengling; Amin, Milan R; Berger, Kenneth I; Cotrina-Vidal, Maria L; Kazeros, Angeliki; Durmus, Nedim; Fernandez-Beros, Maria-Elena; Goldring, Roberta M; Rosen, Rebecca; Shao, Yongzhao
The destruction of the World Trade Center (WTC) towers on the 11th of September, 2001 released a vast amount of aerosolized dust and smoke resulting in acute and chronic exposures to community members as well as responders. The WTC Environmental Health Center (WTC EHC) is a surveillance and treatment program for a diverse population of community members, including local residents and local workers with WTC dust exposure. Many of these patients have reported persistent lower respiratory symptoms (LRS) despite treatment for presumed asthma. Our goal was to identify conditions associated with persistent uncontrolled LRS despite standard asthma management. We recruited 60 patients who were uncontrolled at enrollment and, after a three-month run-in period on high-dose inhaled corticosteroid and long acting bronchodilator, reassessed their status as Uncontrolled or Controlled based on a score from the Asthma Control Test (ACT). Despite this treatment, only 11 participants (18%) gained Controlled status as defined by the ACT. We compared conditions associated with Uncontrolled and Controlled status. Those with Uncontrolled symptoms had higher rates of upper airway symptoms. Many patients had persistent bronchial hyper-reactivity (BHR) and upper airway hyper-reactivity as measured by paradoxical vocal fold movement (PVFM). We found a significant increasing trend in the percentage of Controlled with respect to the presence of BHR and PVFM. We were unable to identify significant differences in lung function or inflammatory markers in this small group. Our findings suggest persistent upper and lower airway hyper-reactivity that may respond to standard asthma treatment, whereas others with persistent LRS necessitate additional diagnostic evaluation, including a focus on the upper airway.
PMID: 32933057
ISSN: 1660-4601
CID: 4592962

Entrainment of Cerebellar Purkinje Cells with Directional AC Electric Fields in Anesthetized Rats

Asan, Ahmet S; Lang, Eric J; Sahin, Mesut
BACKGROUND:Transcranial electrical stimulation (tES) shows promise to treat neurological disorders. Knowledge of how the orthogonal components of the electric field (E-field) alter neuronal activity is required for strategic placement of transcranial electrodes. Yet, essentially no information exists on this relationship for mammalian cerebellum in vivo, despite the cerebellum being a target for clinical tES studies. OBJECTIVE:/Hypothesis: To characterize how cerebellar Purkinje cell (PC) activity varies with the intensity, frequency, and direction of applied AC and DC E-fields. METHODS:Extracellular recordings were obtained from vermis lobule 7 PCs in anesthetized rats. AC (2-100 Hz) or DC E-fields were generated in a range of intensities (0.75-30 mV/mm) in three orthogonal directions. Field-evoked PC simple spike activity was characterized in terms of firing rate modulation and phase-locking as a function of these parameters. t-tests were used for statistical comparisons. RESULTS:The effect of applied E-fields was direction and intensity dependent, with rostrocaudally directed fields causing stronger modulations than dorsoventral fields and mediolaterally directed ones causing little to no effect, on average. The directionality dependent modulation suggests that PC is the primary cell type affected the most by electric stimulation, and this effect was probably given rise by a large dendritic tree and a soma. AC stimulation entrained activity in a frequency dependent manner, with stronger phase-locking to the stimulus cycle at higher frequencies. DC fields produced a modulation consisting of strong transients at current onset and offset with an intervening plateau. CONCLUSION/CONCLUSIONS:(s): Orientation of the exogenous E-field critically determines the modulation depth of cerebellar cortical output. With properly oriented fields, PC simple spike activity can strongly be entrained by AC fields, overriding the spontaneous firing pattern.
PMID: 32919090
ISSN: 1876-4754
CID: 4598232

Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes

Bhattacharya, Aditi; Janal, Malvin N; Veeramachaneni, Ratna; Dolgalev, Igor; Dubeykovskaya, Zinaida; Tu, Nguyen Huu; Kim, Hyesung; Zhang, Susanna; Wu, Angie K; Hagiwara, Mari; Kerr, A Ross; DeLacure, Mark D; Schmidt, Brian L; Albertson, Donna G
Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n=5) compared to N0 cancers (n=10) and normal tissue (n=5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.
PMID: 32895418
ISSN: 2045-2322
CID: 4588822

High-frequency, vector-flow imaging in the left ventricle of FHF2 deficient murine heart

Chapter by: Ketterling, Jeffrey A.; Shekhar, Akshay; Fishman, Glenn I.; Aristizabal, Orlando; Phoon, Colin K.L.
in: IEEE International Ultrasonics Symposium, IUS by
[S.l.] : IEEE Computer Society, 2020
pp. ?-?
ISBN: 9781728154480
CID: 4733942

Large Subcortical Intracerebral Hemorrhage Because of Reversible Cerebral Vasoconstriction Syndrome: A Case Study

Allen, Alexander; Raz, Eytan; Huang, Paul; Rostanski, Sara K
PMID: 32867598
ISSN: 1524-4628
CID: 4582912

Validation of the Neurogenic Orthostatic Hypotension Ratio with Active Standing [Letter]

Fanciulli, Alessandra; Kerer, Katharina; Leys, Fabian; Seppi, Klaus; Kaufmann, Horacio; Norcliffe-Kaufmann, Lucy; Wenning, Gregor K
PMID: 32596818
ISSN: 1531-8249
CID: 4545782