Try a new search

Format these results:

Searched for:

person:bls322

Total Results:

226


Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2

Zhao, Peishen; Pattison, Luke A; Jensen, Dane D; Jimenez-Vargas, Nestor N; Latorre, Rocco; Lieu, TinaMarie; Jaramillo, Josue O; Lopez-Lopez, Cintya; Poole, Daniel P; Vanner, Stephen J; Schmidt, Brian L; Bunnett, Nigel W
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
PMCID:6615677
PMID: 31142616
ISSN: 1083-351x
CID: 4009732

Oral cancer derived tumor necrosis factor alpha (TNFalpha) activates Schwann cells to amplify pain [Meeting Abstract]

Salvo, E; Nguyen, T; Scheff, N; Schmidt, B; Albertson, D; Dolan, J; Ye, Y
Pain is rated by oral cancer patients as the worst symptom and significantly impairs a patient's ability to eat, talk, and drink. Mediators, secreted from oral cancer microenvironment, excite primary afferent neurons, which in turn generate pain. Oral cancer cells release TNFalpha which induces acute inflammation and nociception in mice. We hypothesize that TNFalpha activates Schwann cells to amplify pain signals. First, we confirmed the involvement of TNFalpha in oral cancer pain in patients and animal models. We found that oral cancer tissues collected from patients have higher TNFalpha concentration compared to anatomically matched normal tissues. Differences in TNFalpha concentration between the tumor and anatomically matched normal tissues correlate positively with total pain scores. In a Nitroquinoline 1-oxide (4NQO) mouse oral cancer model we demonstrated reduced mechanical hypersensitivity (P<0.05, N=8) with the dolognawmeter gnawing assay when TNFalpha was neutralized with C-87. Using a non-contact co-culture model, we found that HSC-3 cells induced a more activated human primary Schwann cells phenotype with increased proliferation (P<0.05) and migration (P<0.05); introduction of C-87 in the co-culture reduced Schwann cell proliferation (P<0.05) and migration (P<0.05) induced by HSC-3 cells. After removal of the co-cultured cancer cells, cancer-activated Schwann cells secrete greater amounts of TNFalpha and nerve growth factor (NGF), another known nociceptive mediator in the oral cancer microenvironment, compared to Schwann cells initially co-cultured with DOK (P<0.05) or naive Schwann cells (P<0.05). To determine whether activated Schwann cells mediate oral cancer pain, we cultured Schwann cells in hypoxic conditions - a known cancer stimulus that induces robust Schwann cell activation. Schwann cell supernatant was then collected and injected into the mouse cheek. Supernatant from hypoxia-activated Schwann cells induced greater facial allodynia (measured with von Frey filaments) in mice (P<0.05, N=7), compared to supernatant from Schwann cells cultured in normoxic conditions (N=5). C-87 significantly reduced facial allodynia caused by hypoxiaactivated Schwann cells (P<0.05, N=5). We infer from our results that TNFalpha plays a role in the activation of Schwann cells and that cancer-activated Schwann cells are a source of nociceptive mediators in the cancer microenvironment. Inhibition of Schwann cell activation might be clinically useful for alleviating oral cancer pain
EMBASE:629518016
ISSN: 1098-1136
CID: 4140962

G Protein-Coupled Receptors are Dynamic Regulators of Digestion and Targets for Digestive Diseases

Canals, Meritxell; Poole, Daniel P; Veldhuis, Nicholas A; Schmidt, Brian L; Bunnett, Nigel W
G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. Within the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication amongst cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of over one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have revealed that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs, and has revealed opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
PMID: 30771352
ISSN: 1528-0012
CID: 3655912

Targeted TNF-α Overexpression Drives Salivary Gland Inflammation

Limaye, A; Hall, B E; Zhang, L; Cho, A; Prochazkova, M; Zheng, C; Walker, M; Adewusi, F; Burbelo, P D; Sun, Z J; Ambudkar, I S; Dolan, J C; Schmidt, B L; Kulkarni, A B
Chronic inflammation of the salivary glands from pathologic conditions such as Sjögren's syndrome can result in glandular destruction and hyposalivation. To understand which molecular factors may play a role in clinical cases of salivary gland hypofunction, we developed an aquaporin 5 (AQP5) Cre mouse line to produce genetic recombination predominantly within the acinar cells of the glands. We then bred these mice with the TNF-αglo transgenic line to develop a mouse model with salivary gland-specific overexpression of TNF-α; which replicates conditions seen in sialadenitis, an inflammation of the salivary glands resulting from infection or autoimmune disorders such as Sjögren's syndrome. The resulting AQP5-Cre/TNF-αglo mice display severe inflammation in the salivary glands with acinar cell atrophy, fibrosis, and dilation of the ducts. AQP5 expression was reduced in the salivary glands, while tight junction integrity appeared to be disrupted. The immune dysregulation in the salivary gland of these mice led to hyposalivation and masticatory dysfunction.
PMID: 30958728
ISSN: 1544-0591
CID: 3809552

Decitabine attenuates nociceptive behavior in a murine model of bone cancer pain

Appel, Camilla Kristine; Scheff, Nicole Newell; Viet, Chi Tonglien; Lee Schmidt, Brian; Heegaard, Anne-Marie
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain and as cancer patients are living longer new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in pre-clinical models of post-surgical and soft tissue oral cancer pain by inducing an up-regulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2µg/g, i.p.) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant which reduced the number of responsive DRG neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
PMID: 30422869
ISSN: 1872-6623
CID: 3457002

TNFα in the Trigeminal Nociceptive System Is Critical for Temporomandibular Joint Pain

Bai, Qian; Liu, Sufang; Shu, Hui; Tang, Yuanyuan; George, Sanjeeth; Dong, Tieli; Schmidt, Brian L; Tao, Feng
Previous studies have shown that tumor necrosis factor alpha (TNFα) is significantly increased in complete Freund's adjuvant (CFA)-treated temporomandibular joint (TMJ) tissues. However, it is unclear whether TNFα in the trigeminal nociceptive system contributes to the development of TMJ pain. In the present study, we investigated the role of TNFα in trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) in CFA-induced inflammatory TMJ pain. Intra-TMJ injection of CFA (10 μl, 5 mg/ml) induced inflammatory pain in the trigeminal nerve V2- and V3-innervated skin areas of WT mice, which was present on day 1 after CFA and persisted for at least 10 days. TNFα in both TG and Sp5C of WT mice was upregulated after CFA injection. The CFA-induced TMJ pain was significantly inhibited in TNFα KO mice. The immunofluorescence staining showed that intra-TMJ CFA injection not only enhanced co-localization of TNFα with Iba1 (a marker for microglia) in both TG and Sp5C but also markedly increased the expression of TNFα in the Sp5C neurons. By the methylated DNA immunoprecipitation assay, we also found that DNA methylation at the TNF gene promoter region in the TG was dramatically diminished after CFA injection, indicating that epigenetic regulation may be involved in the CFA-enhanced TNFα expression in our model. Our results suggest that TNFα in the trigeminal nociceptive system plays a critical role in CFA-induced inflammatory TMJ pain.
PMID: 29696511
ISSN: 1559-1182
CID: 3052882

Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma

Scheff, Nicole N; Alemu, Robel G; Klares, Richard; Wall, Ian M; Yang, Stephen C; Dolan, John C; Schmidt, Brian L
Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G+ immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G+ neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G+ neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G+ neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G+ neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.
PMCID:6756004
PMID: 31607857
ISSN: 1662-5099
CID: 4256722

Synthetic peripherally-restricted cannabinoid suppresses chemotherapy-induced peripheral neuropathy pain symptoms by CB1 receptor activation

Mulpuri, Yatendra; Marty, Vincent N; Munier, Joseph J; Mackie, Ken; Schmidt, Brian L; Seltzman, Herbert H; Spigelman, Igor
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and dose-limiting side effect of cancer treatment that affects millions of cancer survivors throughout the world and current treatment options are extremely limited by their side effects. Cannabinoids are highly effective in suppressing pain symptoms of chemotherapy-induced and other peripheral neuropathies but their widespread use is limited by central nervous system (CNS)-mediated side effects. Here, we tested one compound from a series of recently developed synthetic peripherally restricted cannabinoids (PRCBs) in a rat model of cisplatin-induced peripheral neuropathy. Results show that local or systemic administration of 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI) dose-dependently suppressed CIPN mechanical and cold allodynia. Orally administered PrNMI also dose-dependently suppressed CIPN allodynia symptoms in both male and female rats without any CNS side effects. Co-administration with selective cannabinoid receptor subtype blockers revealed that PrNMI's anti-allodynic effects are mediated by CB1 receptor (CB1R) activation. Expression of CB2Rs was reduced in dorsal root ganglia from CIPN rats, whereas expression of CB1Rs and various endocannabinoid synthesizing and metabolizing enzymes was unaffected. Daily PrNMI treatment of CIPN rats for two weeks showed a lack of appreciable tolerance to PrNMI's anti-allodynic effects. In an operant task which reflects cerebral processing of pain, PrNMI also dose-dependently suppressed CIPN pain behaviors. Our results demonstrate that PRCBs exemplified by PrNMI may represent a viable option for the treatment of CIPN pain symptoms.
PMID: 29981335
ISSN: 1873-7064
CID: 3185962

Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma

Ye, Yi; Scheff, Nicole N; Bernabé, Daniel; Salvo, Elizabeth; Ono, Kentaro; Liu, Cheng; Veeramachaneni, Ratna; Viet, Chi T; Viet, Dan T; Dolan, John C; Schmidt, Brian L
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
PMID: 30009833
ISSN: 1873-7064
CID: 3201952

Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome

Jimenez-Vargas, Nestor N; Pattison, Luke A; Zhao, Peishen; Lieu, TinaMarie; Latorre, Rocco; Jensen, Dane D; Castro, Joel; Aurelio, Luigi; Le, Giang T; Flynn, Bernard; Herenbrink, Carmen Klein; Yeatman, Holly R; Edgington-Mitchell, Laura; Porter, Christopher J H; Halls, Michelle L; Canals, Meritxell; Veldhuis, Nicholas A; Poole, Daniel P; McLean, Peter; Hicks, Gareth A; Scheff, Nicole; Chen, Elyssa; Bhattacharya, Aditi; Schmidt, Brian L; Brierley, Stuart M; Vanner, Stephen J; Bunnett, Nigel W
Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.
PMCID:6077730
PMID: 30012612
ISSN: 1091-6490
CID: 3201962