Try a new search

Format these results:

Searched for:


Total Results:


Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion

Salvo, Elizabeth; Campana, Wendy M; Scheff, Nicole N; Tu, Nguyen Huu; Jeong, Se-Hee; Wall, Ian; Wu, Angie K; Zhang, Susanna; Kim, Hyesung; Bhattacharya, Aditi; Janal, Malvin N; Liu, Cheng; Albertson, Donna G; Schmidt, Brian L; Dolan, John C; Schmidt, Robert E; Boada, M Danilo; Ye, Yi
Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. Mice with PNI exhibited spontaneous nociception and mechanical allodynia. PNI induced afterdischarge in A high threshold mechanoreceptors (AHTMRs), mechanical sensitization (i.e., decreased mechanical thresholds) in both A and C HTMRs, and mechanical desensitization in low threshold mechanoreceptors (LTMRs). PNI resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically-insensitive and electrically-unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.
PMID: 32658150
ISSN: 1872-6623
CID: 4527892

The Histopathology of Oral Cancer Pain in a Mouse Model and a Human Cohort

Naik, K; Janal, M N; Chen, J; Bandary, D; Brar, B; Zhang, S; Dolan, J C; Schmidt, B L; Albertson, D G; Bhattacharya, A
Oral cancer patients often have severe, chronic, and mechanically induced pain at the site of the primary cancer. Oral cancer pain is initiated and maintained in the cancer microenvironment and attributed to release of mediators that sensitize primary sensory nerves. This study was designed to investigate the histopathology associated with painful oral cancers in a preclinical model. The relationship of pain scores with pathologic variables was also investigated in a cohort of 72 oral cancer patients. Wild-type mice were exposed to the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Nociceptive (pain) behavior was measured with the dolognawmeter, an operant device and assay for measuring functional and mechanical allodynia. Lesions developed on the tongues and esophagi of the 4NQO-treated animals and included hyperkeratoses, papillomas, dysplasias, and cancers. Papillomas included lesions with benign and dysplastic pathological features. Two histologic subtypes of squamous cell carcinomas (SCCs) were identified-SCCs with exophytic and invasive components associated with papillary lesions (pSCCs) and invasive SCCs without exophytic histology (iSCCs). Only the pSCC subtype of tongue cancer was associated with nociceptive behavior. Increased tumor size was associated with greater nociceptive behavior in the mouse model and more pain experienced by oral cancer patients. In addition, depth of invasion was associated with patient-reported pain. The pSCC histology identifies 4NQO-induced tongue cancers that are expected to be enriched for expression and release of nociceptive mediators.
PMID: 33030108
ISSN: 1544-0591
CID: 4631562

Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes

Bhattacharya, Aditi; Janal, Malvin N; Veeramachaneni, Ratna; Dolgalev, Igor; Dubeykovskaya, Zinaida; Tu, Nguyen Huu; Kim, Hyesung; Zhang, Susanna; Wu, Angie K; Hagiwara, Mari; Kerr, A Ross; DeLacure, Mark D; Schmidt, Brian L; Albertson, Donna G
Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n = 5) compared to N0 cancers (n = 10) and normal tissue (n = 5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.
PMID: 32895418
ISSN: 2045-2322
CID: 4588822

Oral cancer pain mediators released in exosomes are oncogenes with potential to shape the microenvironment and induce neuronal sensitivity [Meeting Abstract]

Bhattacharya, Aditi; Dubeykoskaya, Zinaida; Nguyen, Huu Tu; Dolgalev, Igor; Veeramachaneni, Ratna; Schmidt, Brian L.; Albertson, Donna G.
ISSN: 0008-5472
CID: 4820802

Oral cancer derived tumor necrosis factor alpha (TNFalpha) activates Schwann cells to amplify pain [Meeting Abstract]

Salvo, E; Nguyen, T; Scheff, N; Schmidt, B; Albertson, D; Dolan, J; Ye, Y
Pain is rated by oral cancer patients as the worst symptom and significantly impairs a patient's ability to eat, talk, and drink. Mediators, secreted from oral cancer microenvironment, excite primary afferent neurons, which in turn generate pain. Oral cancer cells release TNFalpha which induces acute inflammation and nociception in mice. We hypothesize that TNFalpha activates Schwann cells to amplify pain signals. First, we confirmed the involvement of TNFalpha in oral cancer pain in patients and animal models. We found that oral cancer tissues collected from patients have higher TNFalpha concentration compared to anatomically matched normal tissues. Differences in TNFalpha concentration between the tumor and anatomically matched normal tissues correlate positively with total pain scores. In a Nitroquinoline 1-oxide (4NQO) mouse oral cancer model we demonstrated reduced mechanical hypersensitivity (P<0.05, N=8) with the dolognawmeter gnawing assay when TNFalpha was neutralized with C-87. Using a non-contact co-culture model, we found that HSC-3 cells induced a more activated human primary Schwann cells phenotype with increased proliferation (P<0.05) and migration (P<0.05); introduction of C-87 in the co-culture reduced Schwann cell proliferation (P<0.05) and migration (P<0.05) induced by HSC-3 cells. After removal of the co-cultured cancer cells, cancer-activated Schwann cells secrete greater amounts of TNFalpha and nerve growth factor (NGF), another known nociceptive mediator in the oral cancer microenvironment, compared to Schwann cells initially co-cultured with DOK (P<0.05) or naive Schwann cells (P<0.05). To determine whether activated Schwann cells mediate oral cancer pain, we cultured Schwann cells in hypoxic conditions - a known cancer stimulus that induces robust Schwann cell activation. Schwann cell supernatant was then collected and injected into the mouse cheek. Supernatant from hypoxia-activated Schwann cells induced greater facial allodynia (measured with von Frey filaments) in mice (P<0.05, N=7), compared to supernatant from Schwann cells cultured in normoxic conditions (N=5). C-87 significantly reduced facial allodynia caused by hypoxiaactivated Schwann cells (P<0.05, N=5). We infer from our results that TNFalpha plays a role in the activation of Schwann cells and that cancer-activated Schwann cells are a source of nociceptive mediators in the cancer microenvironment. Inhibition of Schwann cell activation might be clinically useful for alleviating oral cancer pain
ISSN: 1098-1136
CID: 4140962

Neutrophil-Mediated Endogenous Analgesia Contributes to Sex Differences in Oral Cancer Pain

Scheff, Nicole N; Bhattacharya, Aditi; Dowse, Edward; Dang, Richard X; Dolan, John C; Wang, Susanna; Kim, Hyesung; Albertson, Donna G; Schmidt, Brian L
The incidence of oral cancer in the United States is increasing, especially in young people and women. Patients with oral cancer report severe functional pain. Using a patient cohort accrued through the New York University Oral Cancer Center and immune-competent mouse models, we identify a sex difference in the prevalence and severity of oral cancer pain. A neutrophil-mediated endogenous analgesic mechanism is present in male mice with oral cancer. Local naloxone treatment potentiates cancer mediator-induced orofacial nociceptive behavior in male mice only. Tongues from male mice with oral cancer have significantly more infiltrating neutrophils compared to female mice with oral cancer. Neutrophils isolated from the cancer-induced inflammatory microenvironment express beta-endorphin and met-enkephalin. Furthermore, neutrophil depletion results in nociceptive behavior in male mice. These data suggest a role for sex-specific, immune cell-mediated endogenous analgesia in the treatment of oral cancer pain.
PMID: 30405367
ISSN: 1662-5145
CID: 3458152

QDNAseq: A bioinformatics pipeline for DNA copy number analysis from shallow whole genome sequencing with noise levels near the probabilistic lower limit imposed by read counting [Meeting Abstract]

Sie, Daoud; Scheinin, Ilari; van Lieshout, Stef; Cordes, Martijn; Pinkel, Daniel; Albertson, Donna G; van de Wiel, Mark A; Ylstra, Bauke
ISSN: 1557-3265
CID: 1942342

Piphillin: Improved Prediction of Metagenomic Content by Direct Inference from Human Microbiomes

Iwai, Shoko; Weinmaier, Thomas; Schmidt, Brian L; Albertson, Donna G; Poloso, Neil J; Dabbagh, Karim; DeSantis, Todd Z
Functional analysis of a clinical microbiome facilitates the elucidation of mechanisms by which microbiome perturbation can cause a phenotypic change in the patient. The direct approach for the analysis of the functional capacity of the microbiome is via shotgun metagenomics. An inexpensive method to estimate the functional capacity of a microbial community is through collecting 16S rRNA gene profiles then indirectly inferring the abundance of functional genes. This inference approach has been implemented in the PICRUSt and Tax4Fun software tools. However, those tools have important limitations since they rely on outdated functional databases and uncertain phylogenetic trees and require very specific data pre-processing protocols. Here we introduce Piphillin, a straightforward algorithm independent of any proposed phylogenetic tree, leveraging contemporary functional databases and not obliged to any singular data pre-processing protocol. When all three inference tools were evaluated against actual shotgun metagenomics, Piphillin was superior in predicting gene composition in human clinical samples compared to both PICRUSt and Tax4Fun (p<0.01 and p<0.001, respectively) and Piphillin's ability to predict disease associations with specific gene orthologs exhibited a 15% increase in balanced accuracy compared to PICRUSt. From laboratory animal samples, no performance advantage was observed for any one of the tools over the others and for environmental samples all produced unsatisfactory predictions. Our results demonstrate that functional inference using the direct method implemented in Piphillin is preferable for clinical biospecimens. Piphillin is publicly available for academic use at
PMID: 27820856
ISSN: 1932-6203
CID: 2303942

Comparative genomic hybridization

Chapter by: Albertson, Donna G.; Pinkel, Daniel
in: Molecular Oncology: Causes of Cancer and Targets for Treatment by
[S.l. : s.n.], 2015
pp. 21-27
ISBN: 9780521876629
CID: 2785552

Molecular genetics methods in discovery of chromosome structure

Chapter by: Albertson, DG
in: Chromosomal Translocations and Genome Rearrangements in Cancer by
pp. 15-25
ISBN: 9783319199832
CID: 2567622