Try a new search

Format these results:

Searched for:

person:jsj4

Total Results:

96


Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development

Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto
The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos.
PMID: 29522707
ISSN: 1095-564x
CID: 2975002

The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling

Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre
Hes3 belongs to the Hes basic helix-loop-helix family of transcriptional repressors that play central roles in maintaining progenitor cells and regulating binary cell fate decisions in the embryo. During Xenopus laevis development, hes3 is expressed in the embryonic ectoderm in a horseshoe shape domain at the edge of the developing neural pate. Hes3 mis-expression at early neurula stage blocks neural crest (snai2, sox8, sox9 and sox10) and cranial placode (six1 and dmrta1) gene expression, and promotes neural plate (sox2 and sox3) fate. At tailbud stage, these embryos exhibited a massive up-regulation of both sox8 and sox10 expression, associated with an increase in genes important for melanocytes differentiation (mitf and dct). Using a hormone inducible construct we show that Hes3 does not induce a pigment cell differentiation program de novo, rather it maintains progenitor cells in an undifferentiated state, and as Hes3 expression subsides overtime these cells adopt a pigment cell fate. We demonstrate that mechanistically Hes3 mediates its activity through inhibition of Wnt/β-catenin signaling, a molecular pathway critical for neural crest specification and pigment cell lineage differentiation. We propose that Hes3 at the edge of the neural plate spatially restricts the response to mesoderm-derived Wnt ligands, thereby contributing to the establishment of sharp boundaries of gene expression at the neural plate border.
PMCID:6138557
PMID: 30016640
ISSN: 1095-564x
CID: 3201982

Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner

Devotta, Arun; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre
Neural crest progenitors are specified through the modulation of several signaling pathways, among which the activation of Wnt/β-catenin signaling by Wnt8 is especially critical. Glycoproteins of the Dickkopf (Dkk) family are important modulators of Wnt signaling acting primarily as Wnt antagonists. Here we report that Dkk2 is required for neural crest specification functioning as a positive regulator of Wnt/β-catenin signaling. Dkk2 depletion in Xenopus embryos causes a loss of neural crest progenitors, a phenotype that is rescued by expression of Lrp6 or β-catenin. Dkk2 overexpression expands the neural crest territory in a pattern reminiscent of Wnt8, Lrp6 and β-catenin gain-of-function phenotypes. Mechanistically, we show that Dkk2 mediates its neural crest-inducing activity through Lrp6 and β-catenin, however unlike Wnt8, in a GSK3β independent manner. These findings suggest that Wnt8 and Dkk2 converge on β-catenin using distinct transduction pathways both independently required to activate Wnt/β-catenin signaling and induce neural crest cells.
PMCID:6056231
PMID: 30035713
ISSN: 2050-084x
CID: 3211892

Regulation of neural crest development by the formin family protein Daam1

Ossipova, Olga; Kerney, Ryan; Saint-Jeannet, Jean-Pierre; Sokol, Sergei Y
The neural crest (NC) multipotent progenitor cells form at the neural plate border and migrate to diverse locations in the embryo to differentiate into many cell types. NC is specified by several embryonic pathways, however the role of noncanonical Wnt signaling in this process remains poorly defined. Daam1 is a formin family protein that is present in embryonic ectoderm at the time of NC formation and can mediate noncanonical Wnt signaling. Our interference experiments indicated that Daam1 is required for NC gene activation. To further study the function of Daam1 in NC development we used a transgenic reporter Xenopus line, in which GFP transcription is driven by sox10 upstream regulatory sequences. The activation of the sox10:GFP reporter in a subset of NC cells was suppressed after Daam1 depletion and in embryos expressing N-Daam1, a dominant interfering construct. Moreover, N-Daam1 blocked reporter activation in neuralized ectodermal explants in response to Wnt11, but not Wnt8 or Wnt3a, confirming that the downstream pathways are different. In complementary experiments, a constitutively active Daam1 fragment expanded the NC territory, but this gain-of-function activity was eliminated in a construct with a point mutation in the FH2 domain that is critical for actin polymerization. These observations suggest a new role of Daam1 and actin remodeling in NC specification.
PMCID:6105563
PMID: 29673042
ISSN: 1526-968x
CID: 3041132

Preface: Celebrating 150 Years of Neural Crest Research

Creuzet, Sophie; Saint-Jeannet, Jean-Pierre
PMID: 30134064
ISSN: 1526-968x
CID: 3243262

Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison

Dubey, Aditi; Rose, Rebecca E; Jones, Drew R; Saint-Jeannet, Jean-Pierre
Retinoic acid (RA) is a vital morphogen for early patterning and organogenesis in the developing embryo. RA is a diffusible, lipophilic molecule that signals via nuclear RA receptor heterodimeric units that regulate gene expression by interacting with RA response elements in promoters of a significant number of genes. For precise RA signaling, a robust gradient of the morphogen is required. The developing embryo contains regions that produce RA, and specific intracellular concentrations of RA are created through local degradation mediated by Cyp26 enzymes. In order to elucidate the mechanisms by which RA executes precise developmental programs, the kinetics of RA metabolism must be clearly understood. Recent advances in techniques for endogenous RA detection and quantification have paved the way for mechanistic studies to shed light on downstream gene expression regulation coordinated by RA. It is increasingly coming to light that RA signaling operates not only as precise concentrations but also employs mechanisms of degradation and feedback inhibition to self-regulate its levels. A global gradient of RA throughout the embryo is often found concurrently with several local gradients, created by juxtaposed domains of RA synthesis and degradation. The existence of such local gradients has been found especially critical for the proper development of craniofacial structures that arise from the neural crest and the cranial placode populations. In this review we summarize the current understanding of how local gradients of RA are established in the embryo and their impact on craniofacial development.
PMCID:5818312
PMID: 29330906
ISSN: 1526-968x
CID: 2906172

Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus

Bae, Chang-Joon; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre
During embryogenesis vertebrates develop a complex craniofacial skeleton associated with sensory organs. These structures are primarily derived from two embryonic cell populations the neural crest and cranial placodes, respectively. Neural crest cells and cranial placodes are specified through the integrated action of several families of signaling molecules, and the subsequent activation of a complex network of transcription factors. Here we describe the expression and function of Anosmin-1 (Anos1), an extracellular matrix protein, during neural crest and cranial placodes development in Xenopus laevis. Anos1 was identified as a target of Pax3 and Zic1, two transcription factors necessary and sufficient to generate neural crest and cranial placodes. Anos1 is expressed in cranial neural crest progenitors at early neurula stage and in cranial placode derivatives later in development. We show that Anos1 function is required for neural crest and sensory organs development in Xenopus, consistent with the defects observed in Kallmann syndrome patients carrying a mutation in ANOS1. These findings indicate that anos1 has a conserved function in the development of craniofacial structures, and indicate that anos1-depleted Xenopus embryos represent a useful model to analyze the pathogenesis of Kallmann syndrome.
PMID: 29277616
ISSN: 1090-2104
CID: 2895772

Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP

Nurbaeva, Meerim K; Eckstein, Miriam; Devotta, Arun; Saint-Jeannet, Jean-Pierre; Yule, David I; Hubbard, Michael J; Lacruz, Rodrigo S
Dental enamel is formed by specialized epithelial cells which handle large quantities of Ca2+ while producing the most highly mineralized tissue. However, the mechanisms used by enamel cells to handle bulk Ca2+ safely remain unclear. Our previous work contradicted the dogma that Ca2+ is ferried through the cytosol of Ca2+-transporting cells and instead suggested an organelle-based route across enamel cells. This new paradigm involves endoplasmic reticulum (ER)-associated Ca2+ stores and their concomitant refilling by store-operated Ca2+ entry (SOCE) mediated by Ca2+ release activated Ca2+ (CRAC) channels. Given that Ca2+ handling is maximal during the enamel-mineralization stage (maturation), we anticipated that SOCE would also be elevated then. Confirmation was obtained here using single-cell recordings of cytosolic Ca2+ concentration ([Ca2+]cyt) in rat ameloblasts. A candidate SOCE agonist, cholecystokinin (CCK), was found to be upregulated during maturation, with Cck transcript abundance reaching 30% of that in brain. CCK-receptor transcripts were also detected and Ca2+ imaging showed that CCK stimulation increased [Ca2+]cyt in a dose-responsive manner that was sensitive to CRAC-channel inhibitors. Similar effects were observed with two other SOCE activators, acetylcholine and ATP, whose receptors were also found in enamel cells. These results provide the first evidence of a potential regulatory system for SOCE in enamel cells and so strengthen the Ca2+ transcytosis paradigm for ER-based transport of bulk Ca2+. Our findings also implicate enamel cells as a new physiological target of CCK and raise the possibility of an auto/paracrine system for regulating Ca2+ transport.
PMCID:6036146
PMID: 30013487
ISSN: 1664-042x
CID: 3200582

Whole-Mount In Situ Hybridization of Xenopus Embryos

Saint-Jeannet, Jean-Pierre
Historically, techniques to analyze the localized distribution of mRNAs during development were performed on sectioned embryos using radioactively labeled riboprobes. The processing of the tissues and the use of emulsion autoradiography were laborious and time-consuming, leading to the development of more direct approaches. The nonradioactive whole-mount in situ hybridization method was first introduced in Drosophila embryos, and later adapted to Xenopus embryos for abundant transcripts such as muscle actin. Since then, the technique has been improved and is now broadly used for the spatial detection of even less abundant transcripts in Xenopus The technique has been especially powerful in the analysis of changes in gene expression in embryos manipulated by mRNA or antisense oligonucleotides microinjection, and in animal cap explants exposed to exogenous factors. The protocol described here provides an excellent signal-to-noise ratio for most labeled probes. It also is relatively high-throughput: With a little practice, approximately 50 samples can easily be processed simultaneously.
PMID: 29084864
ISSN: 1940-3402
CID: 2766132

Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus

Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre
The transcription factors Pax3 and Zic1 are critical to specify the neural plate border and to promote neural crest formation. In a microarray screen designed to identify genes regulated by Pax3 and Zic1 in Xenopus we isolated Znf703/Nlz1 a transcriptional repressor member of the NET protein family. At early neurula stage znf703 is expressed in the dorsal ectoderm, spanning the neural plate and neural plate border, with an anterior boundary of expression corresponding to rhombomeres 3 and 4 (r3/r4) in the prospective hindbrain. As a bonafide target of Pax3 and Zic1, znf703 is activated by neural plate border inducing signals, and its expression depends on Pax3 and Zic1 function in the embryo. Znf703 morpholino-mediated knockdown expanded several posterior hindbrain genes, while Znf703 overexpression completely obliterated the expression of these segmental genes, signifying that the transcriptional repressor activity of Znf703 is critical to pattern the hindbrain. Furthermore, snai2 and sox10 expression was severely impaired upon manipulation of Znf703 expression levels in the embryo suggesting that Znf703 participates in neural crest formation downstream of Pax3 and Zic1 in Xenopus.
PMCID:5734999
PMID: 29086464
ISSN: 1526-968x
CID: 2766122