Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

381


A pH-sensitive opioid does not exhibit analgesic tolerance in a mouse model of colonic inflammation

Degro, Claudius E; Jiménez-Vargas, Nestor Nivardo; Guzman-Rodriguez, Mabel; Schincariol, Hailey; Tsang, Quentin; Reed, David E; Lomax, Alan E; Bunnett, Nigel W; Stein, Christoph; Vanner, Stephen J
BACKGROUND AND PURPOSE/OBJECTIVE:Tolerance to the analgesic effects of opioids and resultant dose escalation is associated with worsening of side effects and greater addiction risk. Here, we compare the development of tolerance to the conventional opioid fentanyl with a novel pH-sensitive μ-opioid receptor (MOR) agonist, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) that is active only in acidic inflammatory microenvironments. EXPERIMENTAL APPROACH/METHODS:An opioid tolerance model was developed in male C57BL/6 mice, with and without dextran sulphate sodium colitis, using increasing doses of either fentanyl or NFEPP over 5 days. Visceral nociception was assessed in vivo by measuring visceromotor responses (VMRs) to noxious colorectal distensions and in vitro measuring colonic afferent nerve activity of mesenteric nerves and performing patch-clamp recordings from isolated dorsal root ganglia neurons. Somatic thermal nociception was tested using a tail immersion assay. Cardiorespiratory effects were analysed by pulse oximeter experiments. KEY RESULTS/RESULTS:VMRs and tail immersion tests demonstrated tolerance to fentanyl, but not to NFEPP in colitis mice. Cross-tolerance also occurred to fentanyl, but not to NFEPP. The MOR agonist DAMGO inhibited colonic afferent nerve activity in colitis mice exposed to chronic NFEPP, but not those from fentanyl-treated mice. Similarly, in patch-clamp recordings from isolated dorsal root ganglia neurons, DAMGO inhibited neurons from NFEPP-, but not fentanyl-treated mice. CONCLUSION AND IMPLICATIONS/CONCLUSIONS:NFEPP did not exhibit tolerance in an inflammatory pain model, unlike fentanyl. Consequently, dose escalation to maintain analgesia during an evolving inflammation could be avoided, mitigating the potential risk of side effects.
PMID: 39396524
ISSN: 1476-5381
CID: 5711032

N-terminomics profiling of naïve and inflamed murine colon reveals proteolytic signatures of legumain

Ziegler, Alexander R; Anderson, Bethany M; Latorre, Rocco; McQuade, Rachel M; Dufour, Antoine; Schmidt, Brian L; Bunnett, Nigel W; Scott, Nichollas E; Edgington-Mitchell, Laura E
Legumain is a cysteine protease broadly associated with inflammation. It has been reported to cleave and activate protease-activated receptor 2 to provoke pain associated with oral cancer. Outside of gastric and colon cancer, little has been reported on the roles of legumain within the gastrointestinal tract. Using a legumain-selective activity-based probe, LE28, we report that legumain is activated within colonocytes and macrophages of the murine colon, and that it is upregulated in models of acute experimental colitis. We demonstrated that loss of legumain activity in colonocytes, either through pharmacological inhibition or gene deletion, had no impact on epithelial permeability in vitro. Moreover, legumain inhibition or deletion had no obvious impacts on symptoms or histological features associated with dextran sulfate sodium-induced colitis, suggesting its proteolytic activity is dispensable for colitis initiation. To gain insight into potential functions of legumain within the colon, we performed field asymmetric waveform ion mobility spectrometry-facilitated quantitative proteomics and N-terminomics analyses on naïve and inflamed colon tissue from wild-type and legumain-deficient mice. We identified 16 altered cleavage sites with an asparaginyl endopeptidase signature that may be direct substrates of legumain and a further 16 cleavage sites that may be indirectly mediated by legumain. We also analyzed changes in protein abundance and proteolytic events broadly associated with colitis in the gut, which permitted comparison to recent analyses on mucosal biopsies from patients with inflammatory bowel disease. Collectively, these results shed light on potential functions of legumain and highlight its potential roles in the transition from inflammation to colorectal cancer.
PMID: 39392222
ISSN: 1097-4652
CID: 5706532

PAR2 on oral cancer cells and nociceptors contributes to oral cancer pain that can be relieved by nanoparticle-encapsulated AZ3451

Bhansali, Divya; Tu, Nguyen H; Inoue, Kenji; Teng, Shavonne; Li, Tianyu; Tran, Hung D; Kim, Dong H; Dong, Jessy; Peach, Chloe J; Sokrat, Badr; Jensen, Dane D; Dolan, John C; Yamano, Seiichi; Robinson, Valeria Mezzano; Bunnett, Nigel W; Albertson, Donna G; Leong, Kam W; Schmidt, Brian L
Oral cancer is notoriously painful. Activation of protease-activated receptor 2 (PAR2, encoded by F2RL1) by proteases in the cancer microenvironment is implicated in oral cancer pain. PAR2 is a G protein-coupled receptor (GPCR) expressed on neurons and cells in the cancer microenvironment. Sustained signaling of PAR2 from endosomes of neurons mediates sensitization and nociception. We focused on the differential contribution of PAR2 on oral cancer cells and neurons to oral cancer pain and whether encapsulation of a PAR2 inhibitor, AZ3451 in nanoparticles (NP) more effectively reverses PAR2 activation. We report that F2RL1 was overexpressed in human oral cancers and cancer cell lines. Deletion of F2RL1 on cancer cells reduced cancer-associated mechanical allodynia. A third-generation polyamidoamine dendrimer, functionalized with cholesterol was self-assembled into NPs encapsulating AZ3451. NP encapsulated AZ3451 (PAMAM-Chol-AZ NPs) more effectively reversed activation of PAR2 at the plasma membrane and early endosomes than free drug. The PAMAM-Chol-AZ NPs showed greater efficacy in reversing nociception than free drug, with respect to both level and duration, in three preclinical mouse models of oral cancer pain. The antinociceptive efficacy was confirmed with an operant orofacial assay. Genetic deletion of F2RL1 on cancer cells or F2rl1 on neurons each partially reversed mechanical cancer allodynia. The remaining nociception could be effectively reversed by PAMAM-Chol-AZ NPs. These findings suggest that PAR2 on oral cancer cells and neurons contribute to oral cancer nociception and NPs loaded with a PAR2 antagonist provide increased antinociception and improved oral function compared to free drug.
PMID: 39418848
ISSN: 1878-5905
CID: 5711082

Protease-Induced Excitation of Dorsal Root Ganglion Neurons in Response to Acute Perturbation of the Gut Microbiota Is Associated With Visceral and Somatic Hypersensitivity

Baker, Corey C; Sessenwein, Jessica L; Wood, Hannah M; Yu, Yang; Tsang, Quentin; Alward, Taylor A; Jimenez Vargas, Nestor N; Omar, Amal Abu; McDonnel, Abby; Segal, Julia P; Sjaarda, Calvin P; Bunnett, Nigel W; Schmidt, Brian L; Caminero, Alberto; Boev, Nadejda; Bannerman, Courtney A; Ghasemlou, Nader; Sheth, Prameet M; Vanner, Stephen J; Reed, David E; Lomax, Alan E
BACKGROUND & AIMS/OBJECTIVE:Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS:In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS:Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS:Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.
PMCID:11350452
PMID: 38494056
ISSN: 2352-345x
CID: 5695582

Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors

Gomez, Kimberly; Duran, Paz; Tonello, Raquel; Allen, Heather N; Boinon, Lisa; Calderon-Rivera, Aida; Loya-López, Santiago; Nelson, Tyler S; Ran, Dongzhi; Moutal, Aubin; Bunnett, Nigel W; Khanna, Rajesh
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
PMID: 37366599
ISSN: 1872-6623
CID: 5540182

Evolving acidic microenvironments during colitis provide selective analgesic targets for a pH-sensitive opioid

Degro, Claudius E; Jiménez-Vargas, Nestor Nivardo; Tsang, Quentin; Yu, Yang; Guzman-Rodriguez, Mabel; Alizadeh, Elahe; Hurlbut, David; Reed, David E; Lomax, Alan E; Stein, Christoph; Bunnett, Nigel W; Vanner, Stephen J
Targeting the acidified inflammatory microenvironment with pH-sensitive opioids is a novel approach for managing visceral pain while mitigating side effects. The analgesic efficacy of pH-dependent opioids has not been studied during the evolution of inflammation, where fluctuating tissue pH and repeated therapeutic dosing could influence analgesia and side effects. Whether pH-dependent opioids can inhibit human nociceptors during extracellular acidification is unexplored. We studied the analgesic efficacy and side-effect profile of a pH-sensitive fentanyl analog, (±)- N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide (NFEPP), during the evolution of colitis induced in mice with dextran sulphate sodium. Colitis was characterized by granulocyte infiltration, histological damage, and acidification of the mucosa and submucosa at sites of immune cell infiltration. Changes in nociception were determined by measuring visceromotor responses to noxious colorectal distension in conscious mice. Repeated doses of NFEPP inhibited nociception throughout the course of disease, with maximal efficacy at the peak of inflammation. Fentanyl was antinociceptive regardless of the stage of inflammation. Fentanyl inhibited gastrointestinal transit, blocked defaecation, and induced hypoxemia, whereas NFEPP had no such side effects. In proof-of-principle experiments, NFEPP inhibited mechanically provoked activation of human colonic nociceptors under acidic conditions mimicking the inflamed state. Thus, NFEPP provides analgesia throughout the evolution of colitis with maximal activity at peak inflammation. The actions of NFEPP are restricted to acidified layers of the colon, without common side effects in normal tissues. N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide could provide safe and effective analgesia during acute colitis, such as flares of ulcerative colitis.
PMID: 37326658
ISSN: 1872-6623
CID: 5610372

Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain

Tu, Nguyen Huu; Inoue, Kenji; Lewis, Parker K; Khan, Ammar; Hwang, Jun Hyeong; Chokshi, Varun; Dabovic, Branka Brukner; Selvaraj, Shanmugapriya; Bhattacharya, Aditi; Dubeykovskaya, Zinaida; Pinkerton, Nathalie M; Bunnett, Nigel W; Loomis, Cynthia A; Albertson, Donna G; Schmidt, Brian L
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
PMCID:10341289
PMID: 37443709
ISSN: 2073-4409
CID: 5535282

Targeting endosomal receptors, a new direction for polymers in nanomedicine

Ramirez-Garcia, Paulina D; Veldhuis, Nicholas A; Bunnett, Nigel W; Davis, Thomas P
In this perspective, we outline a new opportunity for exploiting nanoparticle delivery of antagonists to target G-protein coupled receptors localized in intracellular compartments. We discuss the specific example of antagonizing endosomal receptors involved in pain to develop long-lasting analgesics but also outline the broader application potential of this delivery approach. We discuss the materials used to target endosomal receptors and indicate the design requirements for future successful applications.
PMID: 37219363
ISSN: 2050-7518
CID: 5495752

The contribution of endocytosis to sensitization of nociceptors and synaptic transmission in nociceptive circuits

Tonello, Raquel; Anderson, Wayne B; Davidson, Steve; Escriou, Virginie; Yang, Lei; Schmidt, Brian L; Imlach, Wendy L; Bunnett, Nigel W
Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1-3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope®. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked-down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized non-evoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibiters of clathrin, Dnm and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.
PMID: 36378744
ISSN: 1872-6623
CID: 5374402

Therapeutic antagonism of the neurokinin 1 receptor in endosomes provides sustained pain relief

Hegron, Alan; Peach, Chloe J; Tonello, Raquel; Seemann, Philipp; Teng, Shavonne; Latorre, Rocco; Huebner, Harald; Weikert, Dorothee; Rientjes, Jeanette; Veldhuis, Nicholas A; Poole, Daniel P; Jensen, Dane D; Thomsen, Alex R B; Schmidt, Brian L; Imlach, Wendy L; Gmeiner, Peter; Bunnett, Nigel W
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and βarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
PMCID:10235985
PMID: 37216510
ISSN: 1091-6490
CID: 5503732