Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13151


Mapping the neural mechanism that distinguishes between holistic thinking and analytic thinking

Teng, Yue; Li, Hui-Xian; Chen, Sylvia Xiaohua; Castellanos, Francisco Xavier; Yan, Chao-Gan; Hu, Xiaomeng
Holistic and analytic thinking are two distinct modes of thinking used to interpret the world with relative preferences varying across cultures. While most research on these thinking styles has focused on behavioral and cognitive aspects, a few studies have utilized functional magnetic resonance imaging (fMRI) to explore the correlations between brain metrics and self-reported scale scores. Other fMRI studies used single holistic and analytic thinking tasks. As a single task may involve processing in spurious low-level regions, we used two different holistic and analytic thinking tasks, namely the frame-line task and the triad task, to seek convergent brain regions to distinguish holistic and analytic thinking using multivariate pattern analysis (MVPA). Results showed that brain regions fundamental to distinguish holistic and analytic thinking include the bilateral frontal lobes, bilateral parietal lobes, bilateral precentral and postcentral gyrus, bilateral supplementary motor areas, bilateral fusiform, bilateral insula, bilateral angular gyrus, left cuneus, and precuneus, left olfactory cortex, cingulate gyrus, right caudate and putamen. Our study maps brain regions that distinguish between holistic and analytic thinking and provides a new approach to explore the neural representation of cultural constructs. We provide initial evidence connecting culture-related brain regions with language function to explain the origins of cultural differences in cognitive styles.
PMID: 38723877
ISSN: 1095-9572
CID: 5658482

Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease

Chartampila, Elissavet; Elayouby, Karim S; Leary, Paige; LaFrancois, John J; Alcantara-Gonzalez, David; Jain, Swati; Gerencer, Kasey; Botterill, Justin J; Ginsberg, Stephen D; Scharfman, Helen E
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
PMID: 38904658
ISSN: 2050-084x
CID: 5672412

Changes in forced vital capacity over ≤ 13 years among patients with late-onset Pompe disease treated with alglucosidase alfa: new modeling of real-world data from the Pompe Registry

Berger, Kenneth I; Chien, Yin-Hsiu; Dubrovsky, Alberto; Kishnani, Priya S; Llerena, Juan C; Neilan, Edward; Roberts, Mark; Sheng, Bun; Batista, Julie L; Periquet, Magali; Wilson, Kathryn M; van der Ploeg, Ans T
BACKGROUND:Chronic respiratory insufficiency from progressive muscle weakness causes morbidity and mortality in late-onset Pompe disease (LOPD). Previous Pompe Registry (NCT00231400) analyses for ≤ 5 years' alglucosidase alfa treatment showed a single linear time trend of stable forced vital capacity (FVC) % predicted. METHODS:To assess longer term Pompe Registry data, piecewise linear mixed model regression analyses estimated FVC% predicted trajectories in invasive-ventilator-free patients with LOPD aged ≥ 5 years. We estimated annual FVC change 0-6 months, > 6 months-5 years, and > 5-13 years from treatment initiation, adjusting for baseline age, sex, and non-invasive ventilation. FINDINGS/RESULTS: = 0.0654) and were less steep than published natural history slopes (-1% to -4.6%/year). Estimated individual slopes were ≥ 0%/year in 96.1%, 30.3%, and 13.2% of patients during the 0-6 month, > 6 month-5 year, and > 5-13 year periods, respectively. CONCLUSION/CONCLUSIONS:These real-world data indicate an alglucosidase alfa benefit on FVC trajectory that persists at least 13 years compared with published natural history data. Nevertheless, unmet need remains since most individuals demonstrate lung function decline 5 years after initiating treatment. Whether altered FVC trajectory impacts respiratory failure incidence remains undetermined. TRIAL REGISTRATION/BACKGROUND:This study was registered (NCT00231400) on ClinicalTrials.gov on September 30, 2005, retrospectively registered.
PMID: 38896264
ISSN: 1432-1459
CID: 5672132

Large-scale foundation models and generative AI for BigData neuroscience

Wang, Ran; Chen, Zhe Sage
Recent advances in machine learning have led to revolutionary breakthroughs in computer games, image and natural language understanding, and scientific discovery. Foundation models and large-scale language models (LLMs) have recently achieved human-like intelligence thanks to BigData. With the help of self-supervised learning (SSL) and transfer learning, these models may potentially reshape the landscapes of neuroscience research and make a significant impact on the future. Here we present a mini-review on recent advances in foundation models and generative AI models as well as their applications in neuroscience, including natural language and speech, semantic memory, brain-machine interfaces (BMIs), and data augmentation. We argue that this paradigm-shift framework will open new avenues for many neuroscience research directions and discuss the accompanying challenges and opportunities.
PMID: 38897235
ISSN: 1872-8111
CID: 5672162

Climate change and its implications for kidney health

Goldfarb, David S; Patel, Anuj A
PURPOSE OF REVIEW/OBJECTIVE:Extremes of weather as a result of climate change are affecting social, economic and health systems. Kidney health is being threatened by global warming while treatment of kidney disease is contributing to increasing resource utilization and leaving a substantial carbon footprint. Improved physician awareness and patient education are needed to mitigate the risk. RECENT FINDINGS/RESULTS:Rising temperatures are changing kidney disease patterns, with increasing prevalence of acute kidney injury, chronic kidney disease and kidney stones. These issues disproportionately affect people suffering from social inequality and limited access to resources. SUMMARY/CONCLUSIONS:In this article, we review the effects of climate change on kidney stones, and acute and chronic kidney injury. Finally, we discuss the impact of renal replacement therapies on the environment and proposed ways to mitigate it.
PMID: 38881301
ISSN: 1473-6586
CID: 5671762

DNA mismatch and damage patterns revealed by single-molecule sequencing

Liu, Mei Hong; Costa, Benjamin M; Bianchini, Emilia C; Choi, Una; Bandler, Rachel C; Lassen, Emilie; Grońska-Pęski, Marta; Schwing, Adam; Murphy, Zachary R; Rosenkjær, Daniel; Picciotto, Shany; Bianchi, Vanessa; Stengs, Lucie; Edwards, Melissa; Nunes, Nuno Miguel; Loh, Caitlin A; Truong, Tina K; Brand, Randall E; Pastinen, Tomi; Wagner, J Richard; Skytte, Anne-Bine; Tabori, Uri; Shoag, Jonathan E; Evrony, Gilad D
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
PMID: 38867045
ISSN: 1476-4687
CID: 5669192

Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network

Chen, Yibo; Chien, Jonathan; Dai, Bing; Lin, Dayu; Chen, Zhe Sage
Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors. 
Approach: We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system (LDS) and a discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. 
Main Results: Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.
Significance: Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks. 
&#xD.
PMID: 38861996
ISSN: 1741-2552
CID: 5668992

Shared and Specific Neural Correlates of Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder: A Meta-Analysis of 243 Task-Based Functional MRI Studies

Tamon, Hiroki; Fujino, Junya; Itahashi, Takashi; Frahm, Lennart; Parlatini, Valeria; Aoki, Yuta Y; Castellanos, Francisco Xavier; Eickhoff, Simon B; Cortese, Samuele
OBJECTIVE/UNASSIGNED:To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS/UNASSIGNED:A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS/UNASSIGNED:After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS/UNASSIGNED:Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.
PMID: 38685858
ISSN: 1535-7228
CID: 5663112

Multiomics Assessment of the Gut Microbiome in Rare Hyperoxaluric Conditions

Zaidan, Nadim; Wang, Chan; Chen, Ze; Lieske, John C; Milliner, Dawn; Seide, Barbara; Ho, Melody; Li, Huilin; Ruggles, Kelly V; Modersitzki, Frank; Goldfarb, David S; Blaser, Martin; Nazzal, Lama
INTRODUCTION/UNASSIGNED:Hyperoxaluria is a risk factor for kidney stone formation and chronic kidney disease progression. The microbiome is an important protective factor against oxalate accumulation through the activity of its oxalate-degrading enzymes (ODEs). In this cross-sectional study, we leverage multiomics to characterize the microbial community of participants with primary and enteric hyperoxaluria, as well as idiopathic calcium oxalate kidney stone (CKS) formers, focusing on the relationship between oxalate degrading functions of the microbiome. METHODS/UNASSIGNED:Patients diagnosed with type 1 primary hyperoxaluria (PH), enteric hyperoxaluria (EH), and CKS were screened for inclusion in the study. Participants completed a food frequency questionnaire recording their dietary oxalate content while fecal oxalate levels were ascertained. DNA and RNA were extracted from stool samples and sequenced. Metagenomic (MTG) and metatranscriptomic (MTT) data were processed through our bioinformatics pipelines, and microbiome diversity, differential abundance, and networks were subject to statistical analysis in relationship with oxalate levels. RESULTS/UNASSIGNED:A total of 38 subjects were recruited, including 13 healthy participants, 12 patients with recurrent CKS, 8 with PH, and 5 with EH. Urinary and fecal oxalate were significantly higher in the PH and the EH population compared to healthy controls. At the community level, alpha-diversity and beta-diversity indices were similar across all populations. The respective contributions of single bacterial species to the total oxalate degradative potential were similar in healthy and PH subjects. MTT-based network analysis identified the most interactive bacterial network in patients with PH. Patients with EH had a decreased abundance of multiple major oxalate degraders. CONCLUSION/UNASSIGNED:The composition and inferred activity of oxalate-degrading microbiota were differentially associated with host clinical conditions. Identifying these changes improves our understanding of the relationships between dietary constituents, microbiota, and oxalate homeostasis, and suggests new therapeutic approaches protecting against hyperoxaluria.
PMCID:11184406
PMID: 38899198
ISSN: 2468-0249
CID: 5672212

Single-domain antibody-based protein degrader for synucleinopathies

Jiang, Yixiang; Lin, Yan; Tetlow, Amber M; Pan, Ruimin; Ji, Changyi; Kong, Xiang-Peng; Congdon, Erin E; Sigurdsson, Einar M
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
PMCID:11140919
PMID: 38816762
ISSN: 1750-1326
CID: 5663902