Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

13840


Cross-Disease Communication in Cardiovascular Disease and Cancer [Editorial]

Von Itter, Richard; Moore, Kathryn J
PMID: 38510295
ISSN: 2666-0873
CID: 5640632

An update on private equity acquisitions in dermatology, 2013 to 2022

Agarwal, Aneesh; Orlow, Seth J
PMID: 37863202
ISSN: 1097-6787
CID: 5614262

AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans

van Opbergen, Chantal J M; Narayanan, Bitha; B Sacramento, Chester; Stiles, Katie M; Mishra, Vartika; Frenk, Esther; Ricks, David; Chen, Grace; Zhang, Mingliang; Yarabe, Paul; Schwartz, Jonathan; Delmar, Mario; Herzog, Chris D; Cerrone, Marina
BACKGROUND/UNASSIGNED:gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS/UNASSIGNED:Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated deletion of plakophilin-2). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2a. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS/UNASSIGNED:Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS/UNASSIGNED:These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.
PMID: 38288614
ISSN: 2574-8300
CID: 5627442

Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration

Qian, Weiyi; Yamaguchi, Naoya; Lis, Patrycja; Cammer, Michael; Knaut, Holger
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
PMID: 38096821
ISSN: 1879-0445
CID: 5588892

The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice

Stevenson, Matthew; Srivastava, Ankita; Nacher, Maria; Hall, Christopher; Palaia, Thomas; Lee, Jenny; Zhao, Chaohui Lisa; Lau, Raymond; Ali, Mohamed A.E.; Park, Christopher Y.; Schlamp, Florencia; Heffron, Sean P.; Fisher, Edward A.; Brathwaite, Collin; Ragolia, Louis
Purpose: Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. Methods: A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. Results: After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. Conclusion: Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk. Graphical Abstract: [Figure not available: see fulltext.].
SCOPUS:85181724544
ISSN: 0960-8923
CID: 5630102

Clonal Expansion in Cardiovascular Pathology

Lin, Alexander; Brittan, Mairi; Baker, Andrew H.; Dimmeler, Stefanie; Fisher, Edward A.; Sluimer, Judith C.; Misra, Ashish
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells"”and, in some cases, macrophages"”in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
SCOPUS:85182358386
ISSN: 2452-302x
CID: 5629802

Correction: The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice (Obesity Surgery, (2024), 10.1007/s11695-023-07052-w)

Stevenson, Matthew; Srivastava, Ankita; Nacher, Maria; Hall, Christopher; Palaia, Thomas; Lee, Jenny; Zhao, Chaohui Lisa; Lau, Raymond; Ali, Mohamed A.E.; Park, Christopher Y.; Schlamp, Florencia; Heffron, Sean P.; Fisher, Edward A.; Brathwaite, Collin; Ragolia, Louis
The original article has been corrected to replace the Electronic Supplemental Material.
SCOPUS:85182414932
ISSN: 0960-8923
CID: 5629732

RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration

Olson, Hannah M; Maxfield, Amanda; Calistri, Nicholas L; Heiser, Laura M; Qian, Weiyi; Knaut, Holger; Nechiporuk, Alex V
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
PMID: 38165177
ISSN: 1477-9129
CID: 5625932

Clonal Expansion in Cardiovascular Pathology

Lin, Alexander; Brittan, Mairi; Baker, Andrew H; Dimmeler, Stefanie; Fisher, Edward A; Sluimer, Judith C; Misra, Ashish
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
PMCID:10864919
PMID: 38362345
ISSN: 2452-302x
CID: 5635972

Telomere length: a marker for reproductive aging?

Pirtea, Paul; Keefe, David L; Ayoubi, Jean Marc; de Ziegler, Dominique
The improvements accomplished in assisted reproductive technology have emphasized more than ever the role played by chronological age, notably for predicting oocyte quality. Studies in cellular aging have directed research on telomere length measurements as possible markers of functional aging and, notably, female reproductive outcomes. Although further research is still needed, encouraging results are already available on the possibility that leucocyte telomere length may be a useful parameter for assessing reproductive potential in aging women.
PMID: 37914069
ISSN: 1556-5653
CID: 5620382