Try a new search

Format these results:

Searched for:

person:bakerr01

in-biosketch:yes

Total Results:

140


Neurovascular development in the embryonic zebrafish hindbrain

Ulrich, Florian; Ma, Leung-Hang; Baker, Robert G; Torres-Vazquez, Jesus
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos
PMID: 21745463
ISSN: 1095-564x
CID: 137873

Vocalization frequency and duration are coded in separate hindbrain nuclei

Chagnaud, Boris P; Baker, Robert; Bass, Andrew H
Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates
PMCID:3166519
PMID: 21673667
ISSN: 2041-1723
CID: 136618

Encoding of eye position in the goldfish horizontal oculomotor neural integrator

Debowy, Owen; Baker, Robert
Monocular organization of the goldfish horizontal neural integrator was studied during spontaneous scanning saccadic and fixation behaviors. Analysis of neuronal firing rates revealed a population of ipsilateral (37%), conjugate (59%), and contralateral (4%) eye position neurons. When monocular optokinetic stimuli were employed to maximize disjunctive horizontal eye movements, the sampled population changed to 57, 39, and 4%. Monocular eye tracking could be elicited at different gain and phase with the integrator time constant independently modified for each eye by either centripetal (leak) or centrifugal (instability) drifting visual stimuli. Acute midline separation between the hindbrain oculomotor integrators did not affect either monocularity or time constant tuning, corroborating that left and right eye positions are independently encoded within each integrator. Together these findings suggest that the 'ipsilateral' and 'conjugate/contralateral' integrator neurons primarily target abducens motoneurons and internuclear neurons, respectively. The commissural pathway is proposed to select the conjugate/contralateral eye position neurons and act as a feedfoward inhibition affecting null eye position, oculomotor range, and saccade pattern
PMCID:4103780
PMID: 21160010
ISSN: 1522-1598
CID: 122690

Monocular eye position specificity in the oculomotor neural integrator [Meeting Abstract]

Okamura N.; Baker R.; Hirata Y.
Background: The oculomotor neural integrator (NI) is a conceptual neuronal mechanism that maintains eye position after each scanning saccade without visual feedback in the dark. Saccades are triggered by an impulse-like activity of brain stem burst neurons that, similar to a mathematical function, must be integrated to produce a step-like motor command. The impulse- and step-like signals are combined in motor neurons to produce a rapid saccadic eye movement followed by a stable eye position. In the Laplace domain, a perfect integrator is described as 1/s and an imperfect one as 1/(s+a) with a positive a being 'leaky' and a negative a, 'unstable'. Experimentally, the NI was found to be modifiable by using visual feedback paradigms to imitate either 'leaky' or 'unstable' behaviors [1]. In goldfish, neurons exhibiting a highly correlated NI activity have been found in the hindbrain Area I [1]. A recent study demonstrated 3 types of neurons in Area I: ipsilateral (37%), conjugate (59%), and contralateral (4%) [2]. The ipsi- and contralateral neurons increased their firing rate when the ipsi- and contralateral eye positions changed in the temporal and nasal direction, respectively. By contrast, the conjugate neurons did not distinguish between the eyes and fired in both cases. This finding predicts that if the visual feedback paradigm would be applied exclusively to either a nasal or temporal hemi-field of one eye, the effect of training would not be confined to the trained hemi-field. Methods: To test this prediction, we conducted visual feedback NI training in goldfish. The fish were gently restrained at the center of a cylindrical water tank with a planetarium projecting random dots on a white wall. Eye position was monitored by the search coil technique while spontaneous scanning saccades occurred in both directions about a central neutral position. For monocular visual-feedback NI training, the L eye was occluded and the planetarium rotated by a servomotor at a speed proportional to R eye position. When planetarium motion was either centrifugal or centripetal to the selected neutral position, the NI could be trained to be either leaky or unstable, respectively. In the current study we employed R eye unstable only training of both hemi-fields or only one hemi-field (nasal or temporal) by turning off the planetarium when eye position was in the other hemi-field. Results: Nasal only unstable training (n=8) made the NI significantly unstable in the trained R eye hemi-field, but leaky in the untrained R eye hemi-field. The training also affected the NI for the untrained L eye such that it was leaky in the nasal and unstable in the temporal hemi-field. Combined nasal and temporal unstable training (n=9) resulted in a significantly unstable NI for the trained nasal hemi-field, but almost no change in the trained temporal hemi-field. In the untrained L eye, the NI was significantly unstable in the temporal hemi-field but almost no change in the nasal hemi-field. In contrast, temporal only unstable training (n=9) produced just a small change in the NI for that hemi-field and an even smaller leak in the untrained nasal hemi-field. In the L eye there was a small change towards unstable in the nasal hemi-field with hardly any difference in the temporal hemi-field. Conclusions: The present results demonstrate that unstable training of a single hemi-field makes the NI leaky for the opposite hemi-field of the same eye as well as 'unstable and leaky' for hemi-fields in the untrained eye. This experimental finding was predictable from ipsilateral and conjugate Area I neuronal activity [2]. However, the small amount of learning after temporal only and even less after both temporal and nasal unstable training was not foreseen. These results are being further evaluated directly by recording from Area I neurons throughout training and memory
EMBASE:70602077
ISSN: 1471-2202
CID: 146282

Carboxypeptidase A6 in zebrafish development and implications for VIth cranial nerve pathfinding

Lyons, Peter J; Ma, Leung-hang; Baker, Robert; Fricker, Lloyd D
Carboxypeptidase A6 (CPA6) is an extracellular protease that cleaves carboxy-terminal hydrophobic amino acids and has been implicated in the defective innervation of the lateral rectus muscle by the VIth cranial nerve in Duane syndrome. In order to investigate the role of CPA6 in development, in particular its potential role in axon guidance, the zebrafish ortholog was identified and cloned. Zebrafish CPA6 was secreted and interacted with the extracellular matrix where it had a neutral pH optimum and specificity for C-terminal hydrophobic amino acids. Transient mRNA expression was found in newly formed somites, pectoral fin buds, the stomodeum and a conspicuous condensation posterior to the eye. Markers showed this tissue was not myogenic in nature. Rather, the CPA6 localization overlapped with a chondrogenic site which subsequently forms the walls of a myodome surrounding the lateral rectus muscle. No other zebrafish CPA gene exhibited a similar expression profile. Morpholino-mediated knockdown of CPA6 combined with retrograde labeling and horizontal eye movement analyses demonstrated that deficiency of CPA6 alone did not affect either VIth nerve development or function in the zebrafish. We suggest that mutations in other genes and/or enhancer elements, together with defective CPA6 expression, may be required for altered VIth nerve pathfinding. If mutations in CPA6 contribute to Duane syndrome, our results also suggest that Duane syndrome can be a chondrogenic rather than a myogenic or neurogenic developmental disorder
PMCID:2945764
PMID: 20885977
ISSN: 1932-6203
CID: 139622

Ancestry of motor innervation to pectoral fin and forelimb

Ma, Leung-Hang; Gilland, Edwin; Bass, Andrew H; Baker, Robert
Motor innervation to the tetrapod forelimb and fish pectoral fin is assumed to share a conserved spinal cord origin, despite major structural and functional innovations of the appendage during the vertebrate water-to-land transition. In this paper, we present anatomical and embryological evidence showing that pectoral motoneurons also originate in the hindbrain among ray-finned fish. New and previous data for lobe-finned fish, a group that includes tetrapods, and more basal cartilaginous fish showed pectoral innervation that was consistent with a hindbrain-spinal origin of motoneurons. Together, these findings support a hindbrain-spinal phenotype as the ancestral vertebrate condition that originated as a postural adaptation for pectoral control of head orientation. A phylogenetic analysis indicated that Hox gene modules were shared in fish and tetrapod pectoral systems. We propose that evolutionary shifts in Hox gene expression along the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral motoneurons from the hindbrain much like their target appendage gained independence from the head
PMCID:2963806
PMID: 20975699
ISSN: 2041-1723
CID: 114059

Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain

Ma, Leung-Hang; Punnamoottil, Beena; Rinkwitz, Silke; Baker, Robert
To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a, was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable and mosaic in rhombomere 7-8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence, the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification during both growth and evolution
PMCID:2693931
PMID: 19536294
ISSN: 1932-6203
CID: 100205

Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus

Lambert, Francois M; Beck, James C; Baker, Robert; Straka, Hans
Semicircular canals have been sensors of angular acceleration for 450 million years. This vertebrate adaptation enhances survival by implementing postural and visual stabilization during motion in a three-dimensional environment. We used an integrated neuroethological approach in larval Xenopus to demonstrate that semicircular canal dimensions, and not the function of other elements, determines the onset of angular acceleration detection. Before angular vestibuloocular function in either the vertical or horizontal planes, at stages 47 and 48, respectively, each individual component of the vestibuloocular system was shown to be operational: extraocular muscles could be activated, central neural pathways were complete, and canal hair cells were capable of evoking graded responses. For Xenopus, a minimum semicircular canal lumen radius of 60 microm was necessary to permit endolymph displacement sufficient for sensor function at peak accelerations of 400 degrees /s(2). An intra-animal comparison demonstrated that this size is reached in the vertical canals earlier in development than in the horizontal canals, corresponding to the earlier onset of vertical canal-activated ocular motor behavior. Because size constitutes a biophysical threshold for canal-evoked behavior in other vertebrates, such as zebrafish, we suggest that the semicircular canal lumen and canal circuit radius are limiting the onset of vestibular function in all small vertebrates. Given that the onset of gravitoinertial acceleration detection precedes angular acceleration detection by up to 10 d in Xenopus, these results question how the known precise spatial patterning of utricular and canal afferents in adults is achieved during development
PMCID:2647017
PMID: 18685033
ISSN: 1529-2401
CID: 140345

Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment

Bass, Andrew H; Gilland, Edwin H; Baker, Robert
The macroevolutionary events leading to neural innovations for social communication, such as vocalization, are essentially unexplored. Many fish vocalize during female courtship and territorial defense, as do amphibians, birds, and mammals. Here, we map the neural circuitry for vocalization in larval fish and show that the vocal network develops in a segment-like region across the most caudal hindbrain and rostral spinal cord. Taxonomic analysis demonstrates a highly conserved pattern between fish and all major lineages of vocal tetrapods. We propose that the vocal basis for acoustic communication among vertebrates evolved from an ancestrally shared developmental compartment already present in the early fishes.
PMCID:2582147
PMID: 18635807
ISSN: 0036-8075
CID: 163439

Segmental organization of hindbrain functional circuits in adult anamniotes [Meeting Abstract]

Straka, H; Baker, R; Gilland, E
ISI:000251266000482
ISSN: 0362-2525
CID: 87179