Try a new search

Format these results:

Searched for:

person:bakerr01

in-biosketch:yes

Total Results:

140


Functional dissection of circuitry in a neural integrator

Aksay, Emre; Olasagasti, Itsaso; Mensh, Brett D; Baker, Robert; Goldman, Mark S; Tank, David W
In neural integrators, transient inputs are accumulated into persistent firing rates that are a neural correlate of short-term memory. Integrators often contain two opposing cell populations that increase and decrease sustained firing as a stored parameter value rises. A leading hypothesis for the mechanism of persistence is positive feedback through mutual inhibition between these opposing populations. We tested predictions of this hypothesis in the goldfish oculomotor velocity-to-position integrator by measuring the eye position and firing rates of one population, while pharmacologically silencing the opposing one. In complementary experiments, we measured responses in a partially silenced single population. Contrary to predictions, induced drifts in neural firing were limited to half of the oculomotor range. We built network models with synaptic-input thresholds to demonstrate a new hypothesis suggested by these data: mutual inhibition between the populations does not provide positive feedback in support of integration, but rather coordinates persistent activity intrinsic to each population
PMCID:2803116
PMID: 17369822
ISSN: 1097-6256
CID: 138037

Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish

Straka, Hans; Beck, James C; Pastor, Angel M; Baker, Robert
Intracellular recording and single-cell labeling were combined to investigate the oculomotor circuitry of the goldfish cerebellar vestibulolateral lobe, consisting of the eminentia granularis (Egr) and caudal lobe. Purkinje cells exhibiting highly conserved vertebrate electrophysiological and morphological properties provide the direct output from the caudal lobe to the vestibular nuclei. Biocytin labeling of the Egr distinguished numerous hindbrain precerebellar sources that could be divided into either putative mechano- or vestibulosensitive nuclei based on cellular location and axon trajectories. Precerebellar neurons in a hindbrain nucleus, called Area II, were electrophysiologically characterized after antidromic activation from the Egr (>50% bilateral) and their morphology analyzed after intracellular biocytin labeling (n = 28). Bipolar spindle-shaped somas ranged widely in size with comparably scaled dendritic arbors exhibiting largely closed field configuration. Area II neurons (85%) projected to the ipsilateral Egr with most (93%) sending a collateral through the cerebellar commissure to the contralateral Egr; however, 15% projected to the contralateral Egr by crossing in the ventral hindbrain. Axon terminals in the vestibular nucleus were the only collaterals within the hindbrain. Every Area II neuron received a disynaptic EPSP after contralateral horizontal canal nerve stimulation and a disynaptic IPSP, preceded by a small EPSP (>50%), after ipsilateral activation. Vestibular synaptic potentials were of varying shape/amplitude, unrelated to neuron location in the nucleus, and thus likely a correlate of somadendritic size. The exceptional separation of eye position and eye velocity signals into two separate hindbrain nuclei represents an ideal model for understanding the precerebellar projection to the vestibulocerebellum
PMID: 16775208
ISSN: 0022-3077
CID: 142120

Conserved co-regulation and promoter sharing of hoxb3a and hoxb4a in zebrafish

Hadrys, Thorsten; Punnamoottil, Beena; Pieper, Mareike; Kikuta, Hiroshi; Pezeron, Guillaume; Becker, Thomas S; Prince, Victoria; Baker, Robert; Rinkwitz, Silke
The expression of zebrafish hoxb3a and hoxb4a has been found to be mediated through five transcripts, hoxb3a transcripts I-III and hoxb4a transcripts I-II, driven by four promoters. A 'master' promoter, located about 2 kb downstream of hoxb5a, controls transcription of a pre-mRNA comprising exon sequences of both genes. This unique gene structure is proposed to provide a novel mechanism to ensure overlapping, tissue-specific expression of both genes in the posterior hindbrain and spinal cord. Transgenic approaches were used to analyze the functions of zebrafish hoxb3a/hoxb4a promoters and enhancer sequences containing regions of homology that were previously identified by comparative genomics. Two neural enhancers were shown to establish specific anterior expression borders within the hindbrain and mediate expression in defined neuronal populations derived from hindbrain rhombomeres (r) 5 to 8, suggesting a late role of the genes in neuronal cell lineage specification. Species comparison showed that the zebrafish hoxb3a r5 and r6 enhancer corresponded to a sequence within the mouse HoxA cluster controlling activity of Hoxa3 in r5 and r6, whereas a homologous region within the HoxB cluster activated Hoxb3 expression but limited to r5. We conclude that the similarity of hoxb3a/Hoxa3 regulatory mechanisms reflect the shared descent of both genes from a single ancestral paralog group 3 gene
PMID: 16860306
ISSN: 0012-1606
CID: 68982

Precerebellar hindbrain neurons encoding eye velocity during vestibular and optokinetic behavior in the goldfish

Beck, James C; Rothnie, Paul; Straka, Hans; Wearne, Susan L; Baker, Robert
Elucidating the causal role of head and eye movement signaling during cerebellar-dependent oculomotor behavior and plasticity is contingent on knowledge of precerebellar structure and function. To address this question, single-unit extracellular recordings were made from hindbrain Area II neurons that provide a major mossy fiber projection to the goldfish vestibulolateral cerebellum. During spontaneous behavior, Area II neurons exhibited minimal eye position and saccadic sensitivity. Sinusoidal visual and vestibular stimulation over a broad frequency range (0.1-4.0 Hz) demonstrated that firing rate mirrored the amplitude and phase of eye or head velocity, respectively. Table frequencies >1.0 Hz resulted in decreased firing rate relative to eye velocity gain, while phase was unchanged. During visual steps, neuronal discharge paralleled eye velocity latency (approximately 90 ms) and matched both the build-up and the time course of the decay (approximately 19 s) in eye velocity storage. Latency of neuronal discharge to table steps (40 ms) was significantly longer than for eye movement (17 ms), but firing rate rose faster than eye velocity to steady-state levels. The velocity sensitivity of Area II neurons was shown to equal (+/- 10%) the sum of eye- and head-velocity firing rates as has been observed in cerebellar Purkinje cells. These results demonstrate that Area II neuronal firing closely emulates oculomotor performance. Conjoint signaling of head and eye velocity together with the termination pattern of each Area II neuron in the vestibulolateral lobe presents a unique eye-velocity brain stem-cerebellar pathway, eliminating the conceptual requirement of motor error signaling
PMID: 16775207
ISSN: 0022-3077
CID: 68818

Preservation of segmental hindbrain organization in adult frogs

Straka, Hans; Baker, Robert; Gilland, Edwin
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228-245, 2006. (c) 2005 Wiley-Liss, Inc
PMID: 16320236
ISSN: 0021-9967
CID: 60893

Ancestral electrophysiological properties of thalamic neurons in vertebrates [Meeting Abstract]

Gamkreilidze GN; Baker R; Llinas R
ORIGINAL:0006276
ISSN: 1558-3635
CID: 75343

Evolutionary patterns of cranial nerve efferent nuclei in vertebrates

Gilland, Edwin; Baker, Robert
All vertebrates have a similar series of rhombomeric hindbrain segments within which cranial nerve efferent nuclei are distributed in a similar rostrocaudal sequence. The registration between these two morphological patterns is reviewed here to highlight the conserved vs. variable aspects of hindbrain organization contributing to diversification of efferent sub-nuclei. Recent studies of segmental origins and migrations of branchiomotor, visceromotor and octavolateral efferent neurons revealed more segmental similarities than differences among vertebrates. Nonetheless, discrete variations exist in the origins of trigeminal, abducens and glossopharyngeal efferent nuclei. Segmental variation of the abducens nucleus remains the sole example of efferent neuronal homeosis during vertebrate hindbrain evolution. Comparison of cranial efferent segmental variations with surrounding intrinsic neurons will distinguish evolutionary changes in segment identity from lesser transformations in expression of unique neuronal types. The diversification of motoneuronal subgroups serving new muscles and functions appears to occur primarily by elaboration within and migration from already established segmental efferent pools rather than by de novo specification in different segmental locations. Identifying subtle variations in segment-specific neuronal phenotypes requires studies of cranial efferent organization within highly diverse groups such as teleosts and mammals
PMID: 16254413
ISSN: 0006-8977
CID: 60894

Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish

Beck, James C; Gilland, Edwin; Tank, David W; Baker, Robert
We quantitatively studied the ontogeny of oculomotor behavior in larval fish as a foundation for studies linking oculomotor structure and function with genetics. Horizontal optokinetic and vestibuloocular reflexes (OKR and VOR, respectively) were measured in three different species (goldfish, zebrafish, and medaka) during the first month after hatching. For all sizes of medaka, and most zebrafish, Bode plots of OKR (0.065-3.0 Hz, +/-10 degrees/s) revealed that eye velocity closely followed stimulus velocity (gain > 0.8) at low frequency but dropped sharply above 1 Hz (gain < 0.3 at 3 Hz). Goldfish showed increased gain proportional to size across frequencies. Linearity testing with steps and sinusoids showed excellent visual performance (gain > 0.8) in medaka almost from hatching; but zebrafish and goldfish exhibited progressive improvement, with only the largest equaling medaka performance. Monocular visual stimulation in zebrafish and goldfish produced gains of 0.5 versus <0.1 for the eye viewing a moving versus stationary stimulus pattern but 0.25 versus <0.1 in medaka. Angular VOR appeared much later than OKR, initially at only high accelerations (>200 degrees /s at 0.5 Hz), first in medaka followed by larger (8.11 mm) zebrafish; but it was virtually nonexistent in goldfish. Velocity storage was not observed except for an eye velocity build-up in the largest medaka. In summary, a robust OKR was achieved shortly after hatching in all three species. In contrast, larval fish seem to be unique among vertebrates tested in their lack of significant angular VOR at stages where active movement is required for feeding and survival
PMID: 15269231
ISSN: 0022-3077
CID: 47777

Plasticity and tuning of the time course of analog persistent firing in a neural integrator

Major, Guy; Baker, Robert; Aksay, Emre; Seung, H Sebastian; Tank, David W
In a companion paper, we reported that the goldfish oculomotor neural integrator could be trained to instability or leak by rotating the visual surround with a velocity proportional to +/- horizontal eye position, respectively. Here we analyze changes in the firing rate behavior of neurons in area I in the caudal brainstem, a central component of the oculomotor neural integrator. Persistent firing could be detuned to instability and leak, respectively, along with fixation behavior. Prolonged training could reduce the time constant of persistent firing of some cells by more than an order of magnitude, to <1 s. Normal visual feedback gradually retuned persistent firing of integrator neurons toward stability, along with fixation behavior. In animals with unstable fixations, approximately half of the eye position-related cells had upward or unstable firing rate drift. In animals with leaky fixations, two-thirds of the eye position-related cells showed leaky firing drift. The remaining eye position-related cells, generally those with lower eye position thresholds, showed a more complex pattern of history-dependent/predictive firing rate drift in relation to eye drift. These complex drift cells often showed a drop in maximum persistent firing rate after training to leak. Despite this diversity, firing drift and the degree of instability or leak in firing rates were broadly correlated with fixation performance. The presence, strength, and reversibility of this plasticity demonstrate that, in this system, visual feedback plays a vital role in gradually tuning the time course of persistent neural firing.
PMCID:419677
PMID: 15136747
ISSN: 0027-8424
CID: 163360

Plasticity and tuning by visual feedback of the stability of a neural integrator

Major, Guy; Baker, Robert; Aksay, Emre; Mensh, Brett; Seung, H Sebastian; Tank, David W
Persistent neural firing is of fundamental importance to working memory and other brain functions because it allows information to be held "online" following an input and to be integrated over time. Many models of persistent activity rely on some kind of positive feedback internal to the neural circuit concerned; however, too much feedback causes runaway firing (instability), and too little results in loss of persistence (leak). This parameter sensitivity leads to the hypothesis that the brain uses an error signal (external feedback) to tune the stability of persistent firing by adjusting the amount of internal feedback. We test this hypothesis by manipulating external visual feedback, a putative sensory error signal, in a model system for persistent firing, the goldfish oculomotor neural integrator. Over tens of minutes to hours, electronically controlled visual feedback consistent with a leaky or unstable integrator can drive the integrator progressively more unstable or leaky, respectively. Eye fixation time constants can be reduced >100-fold to <1 s. Normal visual feedback gradually retunes the integrator back to stability. Changes in the phase of the sinusoidal vestibulo-ocular response are consistent with integrator detuning, as are changes in ocular drift following eye position shifts compensating for brief passive head movements during fixations. Corresponding changes in persistent firing of integrator neurons are presented in the accompanying article. The presence, strength, and reversibility of the plasticity demonstrate that, in this system, external visual feedback plays a vital role in gradually tuning the stability of the neural integrator.
PMCID:419676
PMID: 15136746
ISSN: 0027-8424
CID: 163361