Try a new search

Format these results:

Searched for:

person:buzsag01

Total Results:

387


A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface

Lin, Yu-Ju; Song, Hyunsoo; Oh, Sungjin; Voroslakos, Mihaly; Kim, Kanghwan; Chen, Xing; Wentzloff, David; Buzsaki, Gyorgy; Park, Sung-Yun; Yoon, Euisik
We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.15 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5 oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a LED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.
PMID: 34982690
ISSN: 1940-9990
CID: 5147372

Neurophysiology of Remembering

Buzsáki, György; McKenzie, Sam; Davachi, Lila
By linking the past with the future, our memories define our sense of identity. Because human memory engages the conscious realm, its examination has historically been approached from language and introspection and proceeded largely along separate parallel paths in humans and other animals. Here, we first highlight the achievements and limitations of this mind-based approach and make the case for a new brain-based understanding of declarative memory with a focus on hippocampal physiology. Next, we discuss the interleaved nature and common physiological mechanisms of navigation in real and mental spacetime. We suggest that a distinguishing feature of memory types is whether they subserve actions for single or multiple uses. Finally, in contrast to the persisting view of the mind as a highly plastic blank slate ready for the world to make its imprint, we hypothesize that neuronal networks are endowed with a reservoir of neural trajectories, and the challenge faced by the brain is how to select and match preexisting neuronal trajectories with events in the world.
PMID: 34535061
ISSN: 1545-2085
CID: 5147052

Optogenetic Neural Probes: Fiberless, High-Density, Artifact-Free Neuromodulation : (Invited)

Chapter by: Ko, Eunah; Kim, Kanghwan; Voroslakos, Mihaly; Oh, Sungjin; Buzsaki, Gyorgy; Wise, Kensall D.; Yoon, Euisk
in: Technical Digest - International Electron Devices Meeting, IEDM by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2022
pp. 2911-2914
ISBN: 9781665489591
CID: 5424792

A Miniaturized 256-Channel Neural Recording Interface with Area-Efficient Hybrid Integration of Flexible Probes and CMOS Integrated Circuits

Park, Sung-Yun; Kyounghwan, Na; Voroslakos, Mihaly; Song, Hyunsoo; Slager, Nathan; Oh, Sungjin; Seymour, John P; Buzsaki, Gyorgy; Yoon, Euisik
We report a miniaturized, minimally invasive high-density neural recording interface that occupies only a 1.53 mm2 footprint for hybrid integration of a flexible probe and a 256-channel integrated circuit chip. To achieve such a compact form factor, we developed a custom flip-chip bonding technique using anisotropic conductive film and analog circuit-under-pad in a tiny pitch of 75 m. To enhance signal-to-noise ratios, we applied a reference-replica topology that can provide the matched input impedance for signal and reference paths in low-noise aimpliers (LNAs). The analog front-end (AFE) consists of LNAs, buffers, programmable gain amplifiers, 10b ADCs, a reference generator, a digital controller, and serial-peripheral interfaces (SPIs). The AFE consumes 51.92 W from 1.2 V and 1.8 V supplies in an area of 0.0161 mm2 per channel, implemented in a 180 nm CMOS process. The AFE shows > 60 dB mid-band CMRR, 6.32 Vrms input-referred noise from 0.5 Hz to 10 kHz, and 48 M input impedance at 1 kHz. The fabricated AFE chip was directly flip-chip bonded with a 256-channel flexible polyimide neural probe and assembled in a tiny head-stage PCB. Full functionalities of the fabricated 256-channel interface were validated in both in vitro and in vivo experiments, demonstrating the presented hybrid neural recording interface is suitable for various neuroscience studies in the quest of large scale, miniaturized recording systems.
PMID: 34191721
ISSN: 1558-2531
CID: 4926652

CellExplorer: A framework for visualizing and characterizing single neurons

Petersen, Peter C; Siegle, Joshua H; Steinmetz, Nicholas A; Mahallati, Sara; Buzsáki, György
The large diversity of neuron types provides the means by which cortical circuits perform complex operations. Neuron can be described by biophysical and molecular characteristics, afferent inputs, and neuron targets. To quantify, visualize, and standardize those features, we developed the open-source, MATLAB-based framework CellExplorer. It consists of three components: a processing module, a flexible data structure, and a powerful graphical interface. The processing module calculates standardized physiological metrics, performs neuron-type classification, finds putative monosynaptic connections, and saves them to a standardized, yet flexible, machine-readable format. The graphical interface makes it possible to explore the computed features at the speed of a mouse click. The framework allows users to process, curate, and relate their data to a growing public collection of neurons. CellExplorer can link genetically identified cell types to physiological properties of neurons collected across laboratories and potentially lead to interlaboratory standards of single-cell metrics.
PMCID:8602784
PMID: 34592168
ISSN: 1097-4199
CID: 5061662

A metabolic function of the hippocampal sharp wave-ripple

Tingley, David; McClain, Kathryn; Kaya, Ekin; Carpenter, Jordan; Buzsáki, György
The hippocampus has previously been implicated in both cognitive and endocrine functions1-15. We simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats to identify an activity pattern that may link these disparate functions of the hippocampus. Here we report that clusters of sharp wave-ripples recorded from the hippocampus reliably predicted a decrease in peripheral glucose concentrations within about 10 min. This correlation was not dependent on circadian, ultradian or meal-triggered fluctuations, could be mimicked with optogenetically induced ripples in the hippocampus (but not in the parietal cortex) and was attenuated to chance levels by pharmacogenetically suppressing activity of the lateral septum, which is the major conduit between the hippocampus and the hypothalamus. Our findings demonstrate that a function of the sharp wave-ripple is to modulate peripheral glucose homeostasis, and offer a mechanism for the link between sleep disruption and blood glucose dysregulation in type 2 diabetes16-18.
PMID: 34381214
ISSN: 1476-4687
CID: 5004412

3d-printed recoverable microdrive and base plate system for rodent electrophysiology

Voroslakos, M; Miyawaki, H; Royer, S; Diba, K; Yoon, E; Petersen, P C; Buzsaki, G
Extracellular recordings in freely moving animals allow the monitoring of brain activity from populations of neurons at single-spike temporal resolution. While state-of-the-art electrophysiological recording devices have been developed in recent years (e.g., muLED and Neuropixels silicon probes), implantation methods for silicon probes in rats and mice have not advanced substantially for a decade. The surgery is complex, takes time to master, and involves handling expensive devices and valuable animal subjects. In addition, chronic silicon neural probes are practically single implant devices due to the current low success rate of probe recovery. To successfully recover silicon probes, improve upon the quality of electrophysiological recording, and make silicon probe recordings more accessible, we have designed a miniature, low cost, and recoverable microdrive system. The addition of a novel 3D-printed skull baseplate makes the surgery less invasive, faster, and simpler for both rats and mice. We provide detailed procedural instructions and print designs, allowing researchers to adapt and flexibly customize our designs to their experimental usage.
Copyright
EMBASE:2014845504
ISSN: 2331-8325
CID: 5514722

A transient postnatal quiescent period precedes emergence of mature cortical dynamics

Dominguez, Soledad; Ma, Liang; Yu, Han; Pouchelon, Gabrielle; Mayer, Christian; Spyropoulos, George D; Cea, Claudia; Buzsáki, György; Fishell, Gordon; Khodagholy, Dion; Gelinas, Jennifer N
Mature neural networks synchronize and integrate spatiotemporal activity patterns to support cognition. Emergence of these activity patterns and functions is believed to be developmentally regulated, but the postnatal time course for neural networks to perform complex computations remains unknown. We investigate the progression of large-scale synaptic and cellular activity patterns across development using high spatiotemporal resolution in vivo electrophysiology in immature mice. We reveal that mature cortical processes emerge rapidly and simultaneously after a discrete but volatile transition period at the beginning of the second postnatal week of rodent development. The transition is characterized by relative neural quiescence, after which spatially distributed, temporally precise, and internally organized activity occurs. We demonstrate a similar developmental trajectory in humans, suggesting an evolutionarily conserved mechanism that could facilitate a transition in network operation. We hypothesize that this transient quiescent period is a requisite for the subsequent emergence of coordinated cortical networks.
PMID: 34296997
ISSN: 2050-084x
CID: 4948652

Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing

Henin, Simon; Shankar, Anita; Borges, Helen; Flinker, Adeen; Doyle, Werner; Friedman, Daniel; Devinsky, Orrin; Buzsáki, György; Liu, Anli
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000-ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
PMID: 33889945
ISSN: 1460-2156
CID: 4847522

Metal microdrive and head cap system for silicon probe recovery in freely moving rodent

Vöröslakos, Mihály; Petersen, Peter C; Vöröslakos, Balázs; Buzsáki, György
High-yield electrophysiological extracellular recording in freely moving rodents provides a unique window into the temporal dynamics of neural circuits. Recording from unrestrained animals is critical to investigate brain activity during natural behaviors. The use and implantation of high-channel-count silicon probes represent the largest cost and experimental complexity associated with such recordings making a recoverable and reusable system desirable. To address this, we have designed and tested a novel 3D printed head-gear system for freely moving mice and rats. The system consists of a recoverable microdrive printed in stainless steel and a plastic head cap system, allowing researchers to reuse the silicon probes with ease, decreasing the effective cost, and the experimental effort and complexity. The cap designs are modular and provide structural protection and electrical shielding to the implanted hardware and electronics. We provide detailed procedural instructions allowing researchers to adapt and flexibly modify the head-gear system.
PMCID:8177890
PMID: 34009122
ISSN: 2050-084x
CID: 4924192