Try a new search

Format these results:

Searched for:

person:buzsag01

Total Results:

387


Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory

Zhang, Yiyao; Cao, Liang; Varga, Viktor; Jing, Miao; Karadas, Mursel; Li, Yulong; Buzsáki, György
Learning and memory are assumed to be supported by mechanisms that involve cholinergic transmission and hippocampal theta. Using G protein-coupled receptor-activation-based acetylcholine sensor (GRABACh3.0) with a fiber-photometric fluorescence readout in mice, we found that cholinergic signaling in the hippocampus increased in parallel with theta/gamma power during walking and REM sleep, while ACh3.0 signal reached a minimum during hippocampal sharp-wave ripples (SPW-R). Unexpectedly, memory performance was impaired in a hippocampus-dependent spontaneous alternation task by selective optogenetic stimulation of medial septal cholinergic neurons when the stimulation was applied in the delay area but not in the central (choice) arm of the maze. Parallel with the decreased performance, optogenetic stimulation decreased the incidence of SPW-Rs. These findings suggest that septo-hippocampal interactions play a task-phase-dependent dual role in the maintenance of memory performance, including not only theta mechanisms but also SPW-Rs.
PMID: 33833054
ISSN: 1091-6490
CID: 4839602

Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies

Fernández-Ruiz, Antonio; Oliva, Azahara; Soula, Marisol; Rocha-Almeida, Florbela; Nagy, Gergo A; Martin-Vazquez, Gonzalo; Buzsáki, György
Gamma oscillations are thought to coordinate the spike timing of functionally specialized neuronal ensembles across brain regions. To test this hypothesis, we optogenetically perturbed gamma spike timing in the rat medial (MEC) and lateral (LEC) entorhinal cortices and found impairments in spatial and object learning tasks, respectively. MEC and LEC were synchronized with the hippocampal dentate gyrus through high- and low-gamma-frequency rhythms, respectively, and engaged either granule cells or mossy cells and CA3 pyramidal cells in a task-dependent manner. Gamma perturbation disrupted the learning-induced assembly organization of target neurons. Our findings imply that pathway-specific gamma oscillations route task-relevant information between distinct neuronal subpopulations in the entorhinal-hippocampal circuit. We hypothesize that interregional gamma-time-scale spike coordination is a mechanism of neuronal communication.
PMID: 33795429
ISSN: 1095-9203
CID: 4838402

Preexisting hippocampal network dynamics constrain optogenetically induced place fields

McKenzie, Sam; Huszár, Roman; English, Daniel F; Kim, Kanghwan; Christensen, Fletcher; Yoon, Euisik; Buzsáki, György
Memory models often emphasize the need to encode novel patterns of neural activity imposed by sensory drive. Prior learning and innate architecture likely restrict neural plasticity, however. Here, we test how the incorporation of synthetic hippocampal signals is constrained by preexisting circuit dynamics. We optogenetically stimulated small groups of CA1 neurons as mice traversed a chosen segment of a linear track, mimicking the emergence of place fields. Stimulation induced persistent place field remapping in stimulated and non-stimulated neurons. The emergence of place fields could be predicted from sporadic firing in the new place field location and the temporal relationship to peer neurons before the optogenetic perturbation. Circuit modification was reflected by altered spike transmission between connected pyramidal cells and inhibitory interneurons, which persisted during post-experience sleep. We hypothesize that optogenetic perturbation unmasked sub-threshold place fields. Plasticity in recurrent/lateral inhibition may drive learning through the rapid association of existing states.
PMID: 33539763
ISSN: 1097-4199
CID: 4779132

Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex

Valero, Manuel; Viney, Tim J; Machold, Robert; Mederos, Sara; Zutshi, Ipshita; Schuman, Benjamin; Senzai, Yuta; Rudy, Bernardo; Buzsáki, György
Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.1 and are weakly immunoreactive to neuronal nitric oxide synthase. DSA neurons are weakly excited by deep-layer pyramidal cells and strongly inhibited by several other GABAergic cell types. Spiking of DSA neurons modified the sequential firing order of other neurons at down-up transitions. Optogenetic activation of ID2+Nkx2.1+ interneurons in the posterior parietal cortex during NREM sleep, but not during waking, interfered with consolidation of cue discrimination memory. Despite their sparsity, DSA neurons perform critical physiological functions.
PMID: 33619404
ISSN: 1546-1726
CID: 4794392

Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments

Sharif, Farnaz; Tayebi, Behnam; Buzsáki, György; Royer, Sébastien; Fernandez-Ruiz, Antonio
The hippocampus is thought to guide navigation by forming a cognitive map of space. Different environments differ in geometry and the availability of cues that can be used for navigation. Although several spatial coding mechanisms are known to coexist in the hippocampus, how they are influenced by various environmental features is not well understood. To address this issue, we examined the spatial coding characteristics of hippocampal neurons in mice and rats navigating in different environments. We found that CA1 place cells located in the superficial sublayer were more active in cue-poor environments and preferentially used a firing rate code driven by intra-hippocampal inputs. In contrast, place cells located in the deep sublayer were more active in cue-rich environments and used a phase code driven by entorhinal inputs. Switching between these two spatial coding modes was supported by the interaction between excitatory gamma inputs and local inhibition.
PMID: 33217328
ISSN: 1097-4199
CID: 4708222

Mechanisms and plasticity of chemogenically induced interneuronal suppression of principal cells

Rogers, Stephanie; Rozman, Peter A; Valero, Manuel; Doyle, Werner K; Buzsáki, György
How do firing patterns in a cortical circuit change when inhibitory neurons are excited? We virally expressed an excitatory designer receptor exclusively activated by a designer drug (Gq-DREADD) in all inhibitory interneuron types of the CA1 region of the hippocampus in the rat. While clozapine N-oxide (CNO) activation of interneurons suppressed firing of pyramidal cells, unexpectedly the majority of interneurons also decreased their activity. CNO-induced inhibition decreased over repeated sessions, which we attribute to long-term synaptic plasticity between interneurons and pyramidal cells. Individual interneurons did not display sustained firing but instead transiently enhanced their activity, interleaved with suppression of others. The power of the local fields in the theta band was unaffected, while power at higher frequencies was attenuated, likely reflecting reduced pyramidal neuron spiking. The incidence of sharp wave ripples decreased but the surviving ripples were associated with stronger population firing compared with the control condition. These findings demonstrate that DREADD activation of interneurons brings about both short-term and long-term circuit reorganization, which should be taken into account in the interpretation of chemogenic effects on behavior.
PMID: 33372130
ISSN: 1091-6490
CID: 4731722

Cooling of Medial Septum Reveals Theta Phase Lag Coordination of Hippocampal Cell Assemblies

Petersen, Peter Christian; Buzsáki, György
Hippocampal theta oscillations coordinate neuronal firing to support memory and spatial navigation. The medial septum (MS) is critical in theta generation by two possible mechanisms: either a unitary "pacemaker" timing signal is imposed on the hippocampal system, or it may assist in organizing target subcircuits within the phase space of theta oscillations. We used temperature manipulation of the MS to test these models. Cooling of the MS reduced both theta frequency and power and was associated with an enhanced incidence of errors in a spatial navigation task, but it did not affect spatial correlates of neurons. MS cooling decreased theta frequency oscillations of place cells and reduced distance-time compression but preserved distance-phase compression of place field sequences within the theta cycle. Thus, the septum is critical for sustaining precise theta phase coordination of cell assemblies in the hippocampal system, a mechanism needed for spatial memory.
PMID: 32526196
ISSN: 1097-4199
CID: 4478542

Publisher Correction: Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway

Nitzan, Noam; McKenzie, Sam; Beed, Prateep; English, Daniel Fine; Oldani, Silvia; Tukker, John J; Buzsáki, György; Schmitz, Dietmar
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
PMID: 32636375
ISSN: 2041-1723
CID: 4517312

Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes

Kim, Kanghwan; Vöröslakos, Mihály; Seymour, John P; Wise, Kensall D; Buzsáki, György; Yoon, Euisik
The combination of in vivo extracellular recording and genetic-engineering-assisted optical stimulation is a powerful tool for the study of neuronal circuits. Precise analysis of complex neural circuits requires high-density integration of multiple cellular-size light sources and recording electrodes. However, high-density integration inevitably introduces stimulation artifact. We present minimal-stimulation-artifact (miniSTAR) μLED optoelectrodes that enable effective elimination of stimulation artifact. A multi-metal-layer structure with a shielding layer effectively suppresses capacitive coupling of stimulation signals. A heavily boron-doped silicon substrate silences the photovoltaic effect induced from LED illumination. With transient stimulation pulse shaping, we reduced stimulation artifact on miniSTAR μLED optoelectrodes to below 50 μVpp, much smaller than a typical spike detection threshold, at optical stimulation of >50 mW mm-2 irradiance. We demonstrated high-temporal resolution (<1 ms) opto-electrophysiology without any artifact-induced signal quality degradation during in vivo experiments. MiniSTAR μLED optoelectrodes will facilitate functional mapping of local circuits and discoveries in the brain.
PMCID:7188816
PMID: 32345971
ISSN: 2041-1723
CID: 4412292

Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway

Nitzan, Noam; McKenzie, Sam; Beed, Prateep; English, Daniel Fine; Oldani, Silvia; Tukker, John J; Buzsáki, György; Schmitz, Dietmar
Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.
PMCID:7181800
PMID: 32327634
ISSN: 2041-1723
CID: 4411442