Try a new search

Format these results:

Searched for:

person:choib02 or cohenm01 or costam01 or cuddas01 or daiw01 or tg20 or grunig01 or jinc01 or kleinc01 or ortiza25 or royn01 or sunh01 or moonst01 or gdt1 or veeraa03 or wirgii01 or zelikj01

active:yes

exclude-minors:true

Total Results:

1476


Targeted inhibition of the HNF1A/SHH axis by triptolide overcomes paclitaxel resistance in non-small cell lung cancer

Li, Ling bing; Yang, Ling xiao; Liu, Lei; Liu, Fan rong; Li, Alex H.; Zhu, Yi lin; Wen, Hao; Xue, Xia; Tian, Zhong xian; Sun, Hong; Li, Pei chao; Zhao, Xiao gang
Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. [Figure not available: see fulltext.]
SCOPUS:85182484923
ISSN: 1671-4083
CID: 5629642

Fertility in indigenous communities: An environmental justice perspective

Gordon, Rachel; Zelikoff, Judith T
PMID: 38171982
ISSN: 1878-7541
CID: 5628352

In vivo exposure to electronic waste (e-waste) leachate and hydraulic fracturing fluid adversely impacts the male reproductive system

Raja, Amna; Costa, Patricia; Blum, Jason L; Doherty-Lyons, Shannon; Igbo, Juliet K; Meltzer, Gabriella; Orem, William; McCawley, Michael; Zelikoff, Judith T
Human health effects can arise from unregulated manual disassembly of electronic waste (e-waste) and/or hydraulic fracturing fluid spills. There is limited literature on the effects of e-waste and hydraulic fracturing wastewater exposure on the male reproductive system. Thus, this proof-of-concept study begins to address the question of how wastewater from two potentially hazardous environmental processes could affect sperm quality. Therefore, three groups of eight-week-old adult mice were exposed (5 d/wk for 6 wks) via a mealworm (Tenebrio molitor and Zophabas morio) feeding route to either: (1) e-waste leachate (50% dilution) from the Alaba Market (Lagos, Nigeria); (2) West Virginia hydraulic fracturing flowback (HFF) fluid (50% dilution); or, (3) deionized water (control). At 24-hours (hr), 3 weeks (wk), or 9-wk following the 6-wk exposure period, cohorts of mice were necropsied and adverse effects/persistence on the male reproductive system were examined. Ingestion of e-waste leachate or HFF fluid decreased number and concentration of sperm and increased both chromatin damage and numbers of morphological abnormalities in the sperm when compared to control mice. Levels of serum testosterone were reduced post-exposure (3- and 9-wk) in mice exposed to e-waste leachate and HFF when compared to time-matched controls, indicating the long-term persistence of adverse effects, well after the end of exposure. These data suggest that men living around or working in vicinity of either e-waste or hydraulic fracturing could face harmful effects to their reproductive health. From both a human health and economic standpoint, development of prevention and intervention strategies that are culturally relevant and economically sensitive are critically needed to reduce exposure to e-waste and HFF-associated toxic contaminants.
PMID: 38160783
ISSN: 1873-1708
CID: 5624052

Nickel-induced transcriptional memory in lung epithelial cells promotes interferon signaling upon nicotine exposure

Zhang, Xiaoru; Bradford, Beatrix; Baweja, Sahdev; Tan, Taotao; Lee, Hyun-Wook; Jose, Cynthia C; Kim, Nicholas; Katari, Manpreet; Cuddapah, Suresh
Exposure to nickel, an environmental respiratory toxicant, is associated with lung diseases including asthma, pulmonary fibrosis, bronchitis and cancers. Our previous studies have shown that a majority of the nickel-induced transcriptional changes are persistent and do not reverse even after the termination of exposure. This suggested transcriptional memory, wherein the cell 'remembers' past nickel exposure. Transcriptional memory, due to which the cells respond more robustly to a previously encountered stimulus has been identified in a number of organisms. Therefore, transcriptional memory has been described as an adaptive mechanism. However, transcriptional memory caused by environmental toxicant exposures has not been well investigated. Moreover, how the transcriptional memory caused by an environmental toxicant might influence the outcome of exposure to a second toxicant has not been explored. In this study, we investigated whether nickel-induced transcriptional memory influences the outcome of the cell's response to a second respiratory toxicant, nicotine. Nicotine, an addictive compound in tobacco, is associated with the development of chronic lung diseases including chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Our results show that nicotine exposure upregulated a subset of genes only in the cells previously exposed to nickel. Furthermore, our analyses indicate robust activation of interferon (IFN) signaling in these cells. IFN signaling is a driver of inflammation, which is associated with many chronic lung diseases. Therefore, our results suggest that nicotine exposure of lung cells that retain the transcriptional memory of previous nickel exposure could result in increased susceptibility to developing chronic inflammatory lung diseases.
PMID: 37951547
ISSN: 1096-0333
CID: 5612872

A combination of three antioxidants decreases the impact of rural particulate pollution in Normal human keratinocytes

Ortiz, Angelica; Sun, Hong; Kluz, Thomas; Matsui, Mary S; Carle, Tiffany; Gan, David; Gordon, Terry; Gildea, Lucy; Costa, Max
OBJECTIVE:), is associated with oxidative stress, DNA damage and inflammation, leading to premature signs of skin aging. Because much of the damage results from oxidative stress, we examined the effects of a topical composition containing three antioxidants in an in vitro model system to assess the potential for amelioration of premature aging. The use of multiple antioxidants was of interest based on the typical composition of therapeutic skincare products. It is important to determine the efficacy of multiple antioxidants together and develop a short-term assay for larger scale efficacy testing. METHODS:in the presence and absence of an antioxidant mixture of resveratrol, niacinamide and GHK peptide. Endpoints related to inflammation, premature aging and carcinogenicity were monitored after 5 h of exposure and included IL-6, CXCL10, MMP-1 and NRF2. Differentially expressed genes were monitored by RNA-seq. RESULTS:and suppressed by antioxidants. CONCLUSIONS:Specific signalling pathways known to be correlated with skin inflammation and aging were examined based on their suitability for use in efficacy testing for the prevention of skin damage due to ambient hydrocarbon pollution. Endpoints examined after only 5 h of exposure provide a useful method amenable to high through-put screening. The results obtained reinforce the concept that a multiple antioxidant preparation, topically applied, may reduce pro-inflammatory signalling and cellular damage and thereby reduce premature skin aging due to exposure to rural-derived airborne pollution.
PMID: 37602524
ISSN: 1468-2494
CID: 5598212

Metabolomic differences in connective tissue disease-associated versus idiopathic pulmonary arterial hypertension in the PVDOMICS cohort

Simpson, Catherine E; Hemnes, Anna R; Griffiths, Megan; Grunig, Gabriele; Tang, W H Wilson; Garcia, Joe G N; Barnard, John; Comhair, Suzy A; Damico, Rachel L; Mathai, Stephen C; Hassoun, Paul M
OBJECTIVE:Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) experience worse survival and derive less benefit from pulmonary vasodilator therapies than patients with idiopathic PAH (IPAH). We sought to identify differential metabolism in CTD-PAH versus IPAH patients that might underlie these observed clinical differences. METHODS:Adult subjects with CTD-PAH (n=141) and IPAH (n=165) from the PVDOMICS (Pulmonary Vascular Disease Phenomics) Study were included. Detailed clinical phenotyping was performed at cohort enrollment, including broad-based global metabolomic profiling of plasma samples. Subjects were followed prospectively for ascertainment of outcomes. Supervised and unsupervised machine learning algorithms and regression models were used to compare CTD-PAH versus IPAH metabolomic profiles and to measure metabolite-phenotype associations and interactions. Gradients across the pulmonary circulation were assessed using paired mixed venous and wedged samples in a subset of 115 subjects. RESULTS:Metabolomic profiles distinguished CTD-PAH from IPAH, with CTD-PAH patients demonstrating aberrant lipid metabolism, with lower circulating levels of sex steroid hormones and higher free fatty acids (FA) and FA intermediates in CTD-PAH. Acylcholines were taken up by the right ventricular-pulmonary vascular circulation, particularly in CTD-PAH, while free FAs and acylcarnitines were released. In both PAH subtypes, dysregulated lipid metabolites, among others, were associated with hemodynamic and right ventricular measurements and with transplant-free survival. CONCLUSIONS:CTD-PAH is characterized by aberrant lipid metabolism that may signal shifted metabolic substrate utilization. Abnormalities in RV-pulmonary vascular FA metabolism may imply reduced capacity for mitochondrial beta oxidation within the diseased pulmonary circulation.
PMID: 37335853
ISSN: 2326-5205
CID: 5542552

Toxicological assessment of E-cigarette flavored E-liquids aerosols using Calu-3 cells: A 3D lung model approach

Effah, Felix; Adragna, John; Luglio, David; Bailey, Alexis; Marczylo, Tim; Gordon, Terry
Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.
PMID: 38013136
ISSN: 1879-3185
CID: 5590942

Interpretable predictive models of genome-wide aryl hydrocarbon receptor-DNA binding reveal tissue-specific binding determinants

Filipovic, David; Qi, Wenjie; Kana, Omar; Marri, Daniel; LeCluyse, Edward L; Andersen, Melvin E; Cuddapah, Suresh; Bhattacharya, Sudin
The aryl hydrocarbon receptor (AhR) is an inducible transcription factor whose ligands include the potent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand-activated AhR binds to DNA at dioxin response elements (DREs) containing the core motif 5'-GCGTG-3'. However, AhR binding is highly tissue specific. Most DREs in accessible chromatin are not bound by TCDD-activated AhR, and DREs accessible in multiple tissues can be bound in some and unbound in others. As such, AhR functions similarly to many nuclear receptors. Given that AhR possesses a strong core motif, it is suited for a motif-centered analysis of its binding. We developed interpretable machine learning models predicting the AhR binding status of DREs in MCF-7, GM17212, and HepG2 cells, as well as primary human hepatocytes. Cross-tissue models predicting transcription factor (TF)-DNA binding generally perform poorly. However, reasons for the low performance remain unexplored. By interpreting the results of individual within-tissue models and by examining the features leading to low cross-tissue performance, we identified sequence and chromatin context patterns correlated with AhR binding. We conclude that AhR binding is driven by a complex interplay of tissue-agnostic DRE flanking DNA sequence and tissue-specific local chromatin context. Additionally, we demonstrate that interpretable machine learning models can provide novel and experimentally testable mechanistic insights into DNA binding by inducible TFs.
PMCID:10682972
PMID: 37707797
ISSN: 1096-0929
CID: 5593252

Long-term exposure to several constituents and sources of PM2.5 is associated with incidence of upper aerodigestive tract cancers but not gastric cancer: Results from the large pooled European cohort of the ELAPSE project

Weinmayr, Gudrun; Chen, Jie; Jaensch, Andrea; Skodda, Lea; Rodopoulou, Sophia; Strak, Maciej; de Hoogh, Kees; Andersen, Zorana J; Bellander, Tom; Brandt, Jørgen; Fecht, Daniela; Forastiere, Francesco; Gulliver, John; Hertel, Ole; Hoffmann, Barbara; Hvidtfeldt, Ulla Arthur; Katsouyanni, Klea; Ketzel, Matthias; Leander, Karin; Magnusson, Patrik K E; Pershagen, Göran; Rizzuto, Debora; Samoli, Evangelia; Severi, Gianluca; Stafoggia, Massimo; Tjønneland, Anne; Vermeulen, Roel; Wolf, Kathrin; Zitt, Emanuel; Brunekreef, Bert; Thurston, George; Hoek, Gerard; Raaschou-Nielsen, Ole; Nagel, Gabriele
It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.
PMID: 37996018
ISSN: 1879-1026
CID: 5608792

SEVERITY OF COVID IS ASSOCIATED WITH AIR POLLUTION: A SINGLE-CENTER ASSESSMENT OF RISK

Kwon, Sophia; Crowley, George; Javed, Urooj; Podury, Sanjiti; Grunig, Gabriele; Nolan, Anna
ORIGINAL:0017074
ISSN: 0012-3692
CID: 5573422