Try a new search

Format these results:

Searched for:

person:choib02 or cohenm01 or costam01 or cuddas01 or daiw01 or tg20 or grunig01 or jinc01 or kleinc01 or ortiza25 or royn01 or sunh01 or moonst01 or gdt1 or veeraa03 or wirgii01 or zelikj01

active:yes

exclude-minors:true

Total Results:

1476


DIET AND THE MICROBIOME IN WTC PARTICULATE MATTER-EXPOSED FIREFIGHTERS WITH LUNG DISEASE: THE FIREHOUSE RANDOMIZED CLINICAL TRIAL

Lam, Rachel; Kim, James; Ramprasad, Mihika; Javed, Urooj; Podury, Sanjiti; Kwon, Sophia; Crowley, George; Schwartz, Theresa; Zeig-Owens, Rachel; J.Prezant, David; Grunig, Gabriele; Nolan, Anna
ORIGINAL:0017077
ISSN: 0012-3692
CID: 5573452

Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension

Simpson, Catherine E; Ambade, Anjira S; Harlan, Robert; Roux, Aurelie; Aja, Susan; Graham, David; Shah, Ami A; Hummers, Laura K; Hemnes, Anna R; Leopold, Jane A; Horn, Evelyn M; Berman-Rosenzweig, Erika S; Grunig, Gabriele; Aldred, Micheala A; Barnard, John; Comhair, Suzy A A; Tang, W H Wilson; Griffiths, Megan; Rischard, Franz; Frantz, Robert P; Erzurum, Serpil C; Beck, Gerald J; Hill, Nicholas S; Mathai, Stephen C; Hassoun, Paul M; Damico, Rachel L; ,
Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.
PMID: 37786941
ISSN: 1522-1504
CID: 5610352

Toxic element contaminations of prenatal vitamins

Zhang, Zhuo; Kluz, Thomas; Costa, Max
The detrimental effects of gestational and lactational exposure to adverse chemical agents are gathering increasing attention. In our study, the presence of toxic heavy metals in several prenatal vitamins from six brands available in supermarkets and pharmacies was measured using ICP mass spectrometry. Several toxic heavy metals were detected, some at levels that could have potential toxicity to the fetus and the mother as well. Previous studies have also detected toxic heavy metals in prenatal and other vitamins. One of the reasons for toxic heavy metals in "natural vitamins" sold to consumers is that they are produced from naturally grown material and not synthesized. They are likely exposed to the heavy metals from the ground that they are grown in and there has not been any significant attempt to get rid of them before the vitamin pill was sold to consumers. Thus, this problem is not an isolated issue and regulatory agencies should be dealing more aggressively than they have been doing. In fact, several papers have already been published showing similar findings as we are reporting here. The vitamin pills we analyzed have elevated levels of boron, aluminum, molybdenum, barium, lead, titanium, nickel, arsenic, strontium, and cadmium. The levels of total chromium were also elevated but we did not separately determine Cr(III) and the much more hazardous Cr(VI), because of the tedious procedure required to separate these two forms of Cr.
PMID: 37652310
ISSN: 1096-0333
CID: 5618202

Hexavalent chromium inhibits myogenic differentiation and induces myotube atrophy

Park, Sun Young; Liu, Shan; Carbajal, Edgar Perez; Wosczyna, Michael; Costa, Max; Sun, Hong
Hexavalent chromium [Cr(VI)] is extensively used in many industrial processes. Previous studies reported that Cr(VI) exposures during early embryonic development reduced body weight with musculoskeletal malformations in rodents while exposures in adult mice increased serum creatine kinase activity, a marker of muscle damage. However, the impacts of Cr(VI) on muscle differentiation remain largely unknown. Here, we report that acute exposures to Cr(VI) in mouse C2C12 myoblasts inhibit myogenic differentiation in a dose-dependent manner. Exposure to 2 μM of Cr(VI) resulted in delayed myotube formation, as evidenced by a significant decrease in myotube formation and expression of muscle-specific markers, such as muscle creatine kinase (Mck), Myocyte enhancer factor 2 (Mef2), Myomaker (Mymk) and Myomixer (Mymx). Interestingly, exposure to 5 μM of Cr(VI) completely abolished myotube formation in differentiating C2C12 cells. Moreover, the expression of key myogenic regulatory factors (MRFs) including myoblast determination protein 1 (MyoD), myogenin (MyoG), myogenic factor 5 (Myf5), and myogenic factor 6 (Myf6) were significantly altered in Cr(VI)-treated cells. The inhibitory effect of Cr(VI) on myogenic differentiation was further confirmed in freshly isolated mouse satellite cells, a stem cell population essential for adult skeletal muscle regeneration. Furthermore, Cr(VI) exposure to fully differentiated C2C12 myotubes resulted in a decrease in myotube diameter, which was exacerbated upon co-treatment with dexamethasone. Together, our results demonstrate that Cr(VI) inhibits myogenic differentiation and induces myotube atrophy in vitro.
PMCID:10591800
PMID: 37742872
ISSN: 1096-0333
CID: 5605222

Characterization of histone chaperone MCM2 as a key regulator in arsenic-induced depletion of H3.3 at genomic loci

Wu, Peipei; Lin, Su-Jiun; Chen, Danqi; Jin, Chunyuan
Arsenic exposure is associated with an increased risk of many cancers, and epigenetic mechanisms play a crucial role in arsenic-mediated carcinogenesis. Our previous studies have shown that arsenic exposure induces polyadenylation of H3.1 mRNA and inhibits the deposition of H3.3 at critical gene regulatory elements. However, the precise underling mechanisms are not yet understood. To characterize the factors governing arsenic-induced inhibition of H3.3 assembly through H3.1 mRNA polyadenylation, we utilized mass spectrometry to identify the proteins, especially histone chaperones, with reduced binding affinity to H3.3 under conditions of arsenic exposure and polyadenylated H3.1 mRNA overexpression. Our findings reveal that the interaction between H3.3 and the histone chaperon protein MCM2 is diminished by both polyadenylated H3.1 mRNA overexpression and arsenic treatment in human lung epithelial BEAS-2B cells. The increased binding of MCM2 to H3.1, resulting from elevated H3.1 protein levels, appears to contribute to the reduced availability of MCM2 for H3.3. To further investigate the role of MCM2 in H3.3 deposition during arsenic exposure and H3.1 mRNA polyadenylation, we overexpressed MCM2 in BEAS-2B cells overexpressing polyadenylated H3.1 or exposed to arsenic. Our results demonstrate that MCM2 overexpression attenuates H3.3 depletion at several genomic loci, suggesting its involvement in the arsenic-induced displacement of H3.3 mediated by H3.1 mRNA polyadenylation. These findings suggest that changes in the association between histone chaperone MCM2 and H3.3 due to polyadenylation of H3.1 mRNA may play a pivotal role in arsenic-induced carcinogenesis.
PMCID:10591817
PMID: 37734572
ISSN: 1096-0333
CID: 5631772

The NRF2-p97-NRF2 negative feedback loop

Shakya, Aryatara; Liu, Pengfei; Godek, Jack; McKee, Nicholas W; Dodson, Matthew; Anandhan, Annadurai; Ooi, Aikseng; Garcia, Joe G N; Costa, Max; Chapman, Eli; Zhang, Donna D
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
PMCID:10428046
PMID: 37573837
ISSN: 2213-2317
CID: 5597892

The Cheyenne River Sioux Tribe resists JUUL's targeted exploitation

O'Leary, Rae A; Zelikoff, Judith T; Meltzer, Gabriella Y; Hemmerich, Natalie; Erdei, Esther
PMID: 34933937
ISSN: 1468-3318
CID: 5108812

Resistin-like Molecule α and Pulmonary Vascular Remodeling: A Multi-Strain Murine Model of Antigen and Urban Ambient Particulate Matter Co-Exposure

Durmus, Nedim; Chen, Wen-Chi; Park, Sung-Hyun; Marsh, Leigh M; Kwon, Sophia; Nolan, Anna; Grunig, Gabriele
Pulmonary hypertension (PH) has a high mortality and few treatment options. Adaptive immune mediators of PH in mice challenged with antigen/particulate matter (antigen/PM) has been the focus of our prior work. We identified key roles of type-2- and type-17 responses in C57BL/6 mice. Here, we focused on type-2-response-related cytokines, specifically resistin-like molecule (RELM)α, a critical mediator of hypoxia-induced PH. Because of strain differences in the immune responses to type 2 stimuli, we compared C57BL/6J and BALB/c mice. A model of intraperitoneal antigen sensitization with subsequent, intranasal challenges with antigen/PM (ovalbumin and urban ambient PM2.5) or saline was used in C57BL/6 and BALB/c wild-type or RELMα-/- mice. Vascular remodeling was assessed with histology; right ventricular (RV) pressure, RV weights and cytokines were quantified. Upon challenge with antigen/PM, both C57BL/6 and BALB/c mice developed pulmonary vascular remodeling; these changes were much more prominent in the C57BL/6 strain. Compared to wild-type mice, RELMα-/- had significantly reduced pulmonary vascular remodeling in BALB/c, but not in C57BL/6 mice. RV weights, RV IL-33 and RV IL-33-receptor were significantly increased in BALB/c wild-type mice, but not in BALB/c-RELMα-/- or in C57BL/6-wild-type or C57BL/6-RELMα-/- mice in response to antigen/PM2.5. RV systolic pressures (RVSP) were higher in BALB/c compared to C57BL/6J mice, and RELMα-/- mice were not different from their respective wild-type controls. The RELMα-/- animals demonstrated significantly decreased expression of RELMβ and RELMγ, which makes these mice comparable to a situation where human RELMβ levels would be significantly modified, as only humans have this single RELM molecule. In BALB/c mice, RELMα was a key contributor to pulmonary vascular remodeling, increase in RV weight and RV cytokine responses induced by exposure to antigen/PM2.5, highlighting the significance of the genetic background for the biological role of RELMα.
PMCID:10418630
PMID: 37569308
ISSN: 1422-0067
CID: 5595412

Gaps and future directions in research on health effects of air pollution

Vilcassim, Ruzmyn; Thurston, George D
Despite progress in many countries, air pollution, and especially fine particulate matter air pollution (PM2.5) remains a global health threat: over 6 million premature cardiovascular and respiratory deaths/yr. have been attributed to household and outdoor air pollution. In this viewpoint, we identify present gaps in air pollution monitoring and regulation, and how they could be strengthened in future mitigation policies to more optimally reduce health impacts. We conclude that there is a need to move beyond simply regulating PM2.5 particulate matter mass concentrations at central site stations. A greater emphasis is needed on: new portable and affordable technologies to measure personal exposures to particle mass; the consideration of a submicron (PM1) mass air quality standard; and further evaluations of effects by particle composition and source. We emphasize the need to enable further studies on exposure-health relationships in underserved populations that are disproportionately impacted by air pollution, but not sufficiently represented in current studies.
PMCID:10363432
PMID: 37357089
ISSN: 2352-3964
CID: 5535152

CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1

Luo, Junwen; Tian, Zhongxian; Zhou, Yongjia; Xiao, Zhaohua; Park, Sun Young; Sun, Hong; Zhuang, Ting; Wang, Yongjie; Li, Peiwei; Zhao, Xiaogang
Circular RNAs (circRNAs) play a pivotal role in the tumorigenesis and progression of various cancers. However, the role and mechanisms of circABCA13 in esophageal squamous cell carcinoma (ESCC) are largely unknown. Here, we reported that circABCA13, a novel circular RNA generated by back-splicing of the intron of the ABCA13 gene, is highly expressed in ESCC tumor tissues and cell lines. Upregulation of circABCA13 correlated with TNM stage and a poor prognosis in ESCC patients. While knockdown of circABCA13 in ESCC cells significantly reduced cell proliferation, migration, invasion, and anchorage-independent growth, overexpression of circABCA13 facilitated tumor growth both in vitro and in vivo. In addition, circABCA13 directly binds to miR-4429 and sequesters miR-4429 from its endogenous target, SRXN1 mRNA, which subsequently upregulates SRXN1 and promotes ESCC progression. Consistently, overexpression of miR-4429 or knockdown of SRXN1 abolished malignant behavior promotion of ESCC results from circABCA13 overexpression in vitro and in vivo. Collectively, our study uncovered the oncogenic role of circABCA13 and its mechanism in ESCC, suggesting that circABCA13 could be a potential therapeutic target and a predictive biomarker for ESCC patients.
PMCID:10323080
PMID: 37017121
ISSN: 1349-7006
CID: 5536412