Try a new search

Format these results:

Searched for:

person:helalm01

in-biosketch:true

Total Results:

31


Identification of a new small molecule chemotype of Melanin Concentrating Hormone Receptor-1 antagonists using pharmacophore-based virtual screening

Helal, Mohamed A; Chittiboyina, Amar G; Avery, Mitchell A
MCH receptor is a G protein-coupled receptor with two subtypes R1 and R2. Many studies have demonstrated the role of MCH-R1 in feeding and energy homeostasis. It has been proven that oral administration of small molecule MCH-R1 antagonists significantly reduces food intake and causes a dose-dependent weight loss. In this study, two ligand-based pharmacophores were developed and validated based on recently published MCH-R1 antagonists with diverse structures. Successful pharmacophores had one hydrogen bond acceptor, one positive ionizable, one ring aromatic and two or three hydrophobic groups. These 3D-QSAR models were used for virtual screening of the ZINC chemical database resulting in the identification of nine compounds with more than 50% displacement of radiolabeled MCH at a 20 μM concentration. Moreover, four of these compounds showed antagonistic activities in Aequorin functional assay, including MH-3 which is the first MCH-R1 antagonist based on a diazaspiro[4.5]decane scaffold. The most active compounds were also docked into our previously published MCH-R1 homology model to gain insights into their binding determinants. These compounds could represent a viable starting scaffold for the design of potent MCH-R1 antagonists with improved pharmacokinetic properties as an effective treatment for obesity.
PMID: 31678007
ISSN: 1464-3405
CID: 4171922

Integrated continuous manufacturing in pharmaceutical industry: current evolutionary steps toward revolutionary future

Helal, Nada A; Elnoweam, Ola; Eassa, Heba Abdullah; Amer, Ahmed M; Eltokhy, Mohamed Ashraf; Helal, Mohamed A; Fayyaz, Heba A; Nounou, Mohamed Ismail
Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.
PMID: 31354057
ISSN: 2046-8962
CID: 4010492

Design and Synthesis of Imidazole and Triazole Pyrazoles as Mycobacterium Tuberculosis CYP121A1 Inhibitors

Kishk, Safaa M; McLean, Kirsty J; Sood, Sakshi; Smith, Darren; Evans, Jack W D; Helal, Mohamed A; Gomaa, Mohamed S; Salama, Ismail; Mostafa, Samia M; de Carvalho, Luiz Pedro S; Levy, Colin W; Munro, Andrew W; Simons, Claire
The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (KD). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl (10 f) and tert-butyl (10 g) compounds displaying optimal activity (MIC 1.562 μg/mL, KD 0.22 μM (10 f) and 4.81 μM (10 g)). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5-6, molecular volume >340 Å3, topological polar surface area <40 Å2.
PMCID:6646865
PMID: 31367508
ISSN: 2191-1363
CID: 4011192

Synthesis and biological evaluation of novel cYY analogues targeting Mycobacterium tuberculosis CYP121A1

Kishk, Safaa M; McLean, Kirsty J; Sood, Sakshi; Helal, Mohamed A; Gomaa, Mohamed S; Salama, Ismail; Mostafa, Samia M; de Carvalho, Luiz Pedro S; Munro, Andrew W; Simons, Claire
The rise in multidrug resistant (MDR) cases of tuberculosis (TB) has led to the need for the development of TB drugs with different mechanisms of action. The genome sequence of Mycobacterium tuberculosis (Mtb) revealed twenty different genes coding for cytochrome P450s. CYP121A1 catalyzes a CC crosslinking reaction of dicyclotyrosine (cYY) producing mycocyclosin and current research suggests that either mycocyclosin is essential or the overproduction of cYY is toxic to Mtb. A series of 1,4-dibenzyl-2-imidazol-1-yl-methylpiperazine derivatives were designed and synthesised as cYY mimics. The derivatives substituted in the 4-position of the phenyl rings with halides or alkyl group showed promising antimycobacterial activity (MIC 6.25 μg/mL), with the more lipophilic branched alkyl derivatives displaying optimal binding affinity with CYP121A1 (iPr KD = 1.6 μM; tBu KD = 1.2 μM). Computational studies revealed two possible binding modes within the CYP121A1 active site both of which would effectively block cYY from binding.
PMID: 30837169
ISSN: 1464-3391
CID: 3723042

Development and validation of an HPLC-UV method for simultaneous determination of sildenafil and tramadol in biological fluids: Application to drug-drug interaction study

Dahshan, Hosam Eldin; Helal, Mohamed A; Mostafa, Samia M; Elgawish, Mohamed Saleh
The introduction of sildenafil (SDF) to treat erectile dysfunction has solved a widespread condition with negative on the quality of life. Recently, the co-administration of tramadol (TMD) with SDF to manage premature ejaculation has illegally increased and thus drug-drug interaction studies of these drugs became of great importance. Although certain biological functions have been altered upon co-administration of the two drugs, methods for their determination in vivo to understand their interactions have yet to be published. Herein, therefore, an HPLC method with photometric detection was developed for the determination of a binary mixture of TMD and SDF in rabbit plasma after oral administration. In this study, a reversed-phase chromatography was performed at room temperature on a C18 column with a mobile phase composed of 10 mM Na2HPO4 solution (pH 7.5): acetonitrile (45:55, v/v) at a flow rate of 0.8 mL min-1 using caffeine (CAF) as an internal standard. The detector was set at 220 nm. The total analysis time was 6 min. Calibration graphs were linear in the concentration ranges of 0.1-10 and 0.05-10 μg mL-1 with a detection limit of 0.05 and 0.02 μg mL-1 for TMD and SDF, respectively. The method was validated in terms of accuracy, precision, limit of detection and quantitation, recovery, and stability as per US FDA bioanalytical guidelines. In addition, the metabolites N-desmethylsildenafil (UK-103,320) and O-desmethyltramadol were quantified in rabbit plasma after 2 h of oral administration using LC-MS/MS. The simultaneous administration of TMD with SDF has affected peak plasma concentration (Cmax), Tmax, area under the concentration-time curve (AUC), and the elimination rate constant (Kel) of SDF. The present study is the first to give valuable insights into the drug-drug interaction and the pharmacokinetic implications associated with the co-administration of SDF and TMD.
PMID: 30825803
ISSN: 1873-264x
CID: 3722432

Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists

Darwish, Khaled M; Salama, Ismail; Mostafa, Samia; Gomaa, Mohamed S; Khafagy, El-Sayed; Helal, Mohamed A
Type-2 diabetes mellitus is a progressive cluster of metabolic disorders, representing a global public health burden affecting more than 366 million people worldwide. We recently reported the discovery of three series of novel agents showing balanced activity on two metabolic receptors, peroxisome proliferator activated receptor-γ (PPAR-γ) and free fatty acid receptor 1 (FFAR1), also known as GPCR40. Our designing strategy relied on linking the thiazolidinedione head with known GPCR privilege structures. To further investigate this concept, two new scaffolds, the benzhydrol- and indole-based chemotypes, were introduced here in. Our optimization campaign resulted in three compounds; 15a, 15c, and 15d, with affinities in the low micromolar range on both targets. In vivo study of selected test compounds, revealed that 15c possesses a significant anti-hyperglycemic and anti-hyperlipidemic activities superior to rosiglitazone in fat-fed animal models. Molecular docking analysis was conducted to explain the binding modes of both series. These compounds could lead to the development of the unique antidiabetic agent acting as insulin sensitizer as well as insulin secretagogue.
PMID: 29615345
ISSN: 1464-3405
CID: 3058072

Selective kappa opioid antagonists for treatment of addiction, are we there yet?

Helal, Mohamed A; Habib, Eman S; Chittiboyina, Amar G
Kappa opioid receptor (KOP) is a G-protein coupled receptor mainly expressed in the cerebral cortex and hypothalamus. It is implicated in nociception, diuresis, emotion, cognition, and immune system functions. KOP agonists possess a strong analgesic effect accompanied by a feeling of dysphoria. On the other hand, antagonists of this receptor were found to block depression, anxiety, and drug-seeking behaviors in animal models. Recently, great interest has been given to the development of selective KOP antagonists as an addiction treatment that does not cause dependence itself or show high relapse rates like the currently used agents. This review provides a comprehensive survey of the KOP antagonists developed for this purpose together with their in vivo studies and clinical trials. In addition, a future perspective and recommendations for the work needed to develop clinically relevant KOP antagonists are presented.
PMID: 29107424
ISSN: 1768-3254
CID: 3064692

Novel pyrazoles and pyrazolo[1,2-a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations

Ghareb, Nagat; Elshihawy, Hosam A; Abdel-Daim, Mohamed M; Helal, Mohamed A
COX-2 is an inducible enzyme mediating inflammatory responses. Selective targeting of COX-2 is useful for developing anti-inflammatory agents devoid of ulcerogenic activity. Herein, we report the design and synthesis of a series of pyrazoles and pyrazolo[1,2-a]pyridazines with selective COX-2 inhibitory activity and in vivo anti-inflammatory effect. Both series were accessed through acid-catalyzed ultrasound-assisted reactions. The most active compounds in this study are two novel molecules, 11 and 16, showing promising selectivity and decent IC50 of 16.2 and 20.1nM, respectively. These compounds were also docked into the crystal structure of COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding. Finally, Mulliken charges and electrostatic surface potential were calculated for both compound 11 and celecoxib using DFT method to get insights into the molecular determinants of activity of this compound. These results could lead to the development of novel COX-2 inhibitors with improved selectivity.
PMID: 28427813
ISSN: 1464-3405
CID: 3078252

Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARgamma/FFAR1 dual agonists

Darwish, Khaled M; Salama, Ismail; Mostafa, Samia; Gomaa, Mohamed S; Helal, Mohamed A
Diabetes mellitus is a chronic metabolic disorder that affects more than 180 million people worldwide. Peroxisome proliferator activated receptors (PPARs) are a group of nuclear receptors that have been targeted by the thiazolidinedione (TZD) class of compounds for the management of type II diabetes. PPARgamma is known to regulate adipogenesis and glucose metabolism. Another emerging target for the design of antidiabetic agents is the free fatty acid receptor 1 (FFAR1), previously known as GPR40. Agonists of this receptor were found to enhance insulin secretion in diabetic patients. It has been reported that some thiazolidinediones (TZDs) activate FFAR1 with micromolar potency. In this study, based on docking studies into the crystal structure of PPARgamma and a homology model of FFAR1, nineteen compounds were designed, synthesized, and biologically tested for agonistic activity on both receptors. Nine compounds showed promising dual activity, with two compounds, 11a and 5b, having affinities in the low micromolar range on both targets. These molecules represent the first antidiabetic agents that could act as insulin sensitizers as well as insulin secretagogues.
PMID: 26774923
ISSN: 1768-3254
CID: 2043272

Randomized, Placebo-Controlled Trial of Green Tea Catechins for Prostate Cancer Prevention

Kumar, Nagi B; Pow-Sang, Julio; Egan, Kathleen M; Spiess, Philippe E; Dickinson, Shohreh; Salup, Raoul; Helal, Mohamed; McLarty, Jerry; Williams, Christopher R; Schreiber, Fred; Parnes, Howard L; Sebti, Said; Kazi, Aslam; Kang, Loveleen; Quinn, Gwen; Smith, Tiffany; Yue, Binglin; Diaz, Karen; Chornokur, Ganna; Crocker, Theresa; Schell, Michael J
Preclinical, epidemiologic, and prior clinical trial data suggest that green tea catechins (GTC) may reduce prostate cancer risk. We conducted a placebo-controlled, randomized clinical trial of Polyphenon E (PolyE), a proprietary mixture of GTCs, containing 400 mg (-)-epigallocatechin-3-gallate (EGCG) per day, in 97 men with high-grade prostatic intraepithelial neoplasia (HGPIN) and/or atypical small acinar proliferation (ASAP). The primary study endpoint was a comparison of the cumulative one-year prostate cancer rates on the two study arms. No differences in the number of prostate cancer cases were observed: 5 of 49 (PolyE) versus 9 of 48 (placebo), P = 0.25. A secondary endpoint comparing the cumulative rate of prostate cancer plus ASAP among men with HGPIN without ASAP at baseline, revealed a decrease in this composite endpoint: 3 of 26 (PolyE) versus 10 of 25 (placebo), P < 0.024. This finding was driven by a decrease in ASAP diagnoses on the Poly E (0/26) compared with the placebo arm (5/25). A decrease in serum prostate-specific antigen (PSA) was observed on the PolyE arm [-0.87 ng/mL; 95% confidence intervals (CI), -1.66 to -0.09]. Adverse events related to the study agent did not significantly differ between the two study groups. Daily intake of a standardized, decaffeinated catechin mixture containing 400 mg EGCG per day for 1 year accumulated in plasma and was well tolerated but did not reduce the likelihood of prostate cancer in men with baseline HGPIN or ASAP.
PMCID:4596745
PMID: 25873370
ISSN: 1940-6215
CID: 2588652