Try a new search

Format these results:

Searched for:

person:kleinh01

Total Results:

103


Multifunctional Roles of Saccharomyces cerevisiae Srs2 protein in Replication, Recombination and Repair

Niu, Hengyao; Klein, Hannah L
The Saccharomyces cerevisiae Srs2 DNA helicase has important roles in DNA replication, recombination and repair. In replication, Srs2 aids in repair of gaps by repair synthesis by preventing gaps from being used to initiate recombination. This is considered to be an anti-recombination role. In recombination, Srs2 plays both pro-recombination and anti-recombination roles to promote the synthesis-dependent strand annealing (SDSA) recombination pathway and to inhibit gaps from initiating homologous recombination (HR). In repair, the Srs2 helicase actively promotes gap repair through an interaction with the Exo1 nuclease to enlarge a gap for repair and to prevent Rad51 protein from accumulating on single-stranded DNA. Finally, Srs2 helicase can unwind hairpin-forming repeat sequences to promote replication and prevent repeat instability. The Srs2 activities can be controlled by phosphorylation, SUMO modification, and interaction with key partners at DNA damage or lesions sites, which include PCNA and Rad51. These interactions can also limit DNA polymerase function during recombinational repair independent of the Srs2 translocase or helicase activity, further highlighting the importance of the Srs2 protein in regulating recombination. Here we review the myriad roles of Srs2 that have been documented in genome maintenance and distinguish between the translocase, helicase and additional functions of the Srs2 protein.
PMCID:5399913
PMID: 28011904
ISSN: 1567-1364
CID: 2374642

Increased Spontaneous Recombination in RNase H2-Deficient Cells Arises From Multiple Contiguous rNMPs and Not From Single rNMP Residues Incorporated by DNA Polymerase Epsilon

Epshtein, Anastasiya; Potenski, Catherine J; Klein, Hannah L
Ribonucleotides can become embedded in DNA from insertion by DNA polymerases, failure to remove Okazaki fragment primers, R-loops that can prime replication, and RNA/cDNA-mediated recombination. RNA:DNA hybrids are removed by RNase H enzymes. Single rNMPs in DNA are removed by RNase H2 and if they remain on the leading strand, can lead to mutagenesis in a Top1-dependent pathway. rNMPs in DNA can also stimulate genome instability, among which are homologous recombination gene conversion events. We previously found that, similar to the rNMP-stimulated mutagenesis, rNMP-stimulated recombination was also Top1-dependent. However, in contrast to mutagenesis, we report here that recombination is not stimulated by rNMPs incorporated by the replicative polymerase epsilon. Instead, recombination seems to be stimulated by multiple contiguous rNMPs, which may arise from R-loops or replication priming events.
PMCID:5305187
PMID: 28203566
ISSN: 2311-2638
CID: 2449282

Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA

Niu, Hengyao; Potenski, Catherine J; Epshtein, Anastasiya; Sung, Patrick; Klein, Hannah L
The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process.
PMCID:4943705
PMID: 26716562
ISSN: 1551-4005
CID: 1895172

Ribonucleotides in DNA: hidden in plain sight

Jinks-Robertson, Sue; Klein, Hannah L
PMID: 25736085
ISSN: 1545-9985
CID: 1481442

Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms

Potenski, Catherine J; Niu, Hengyao; Sung, Patrick; Klein, Hannah L
Srs2 helicase is known to dismantle nucleofilaments of Rad51 recombinase to prevent spurious recombination events and unwind trinucleotide sequences that are prone to hairpin formation. Here we document a new, unexpected genome maintenance role of Srs2 in the suppression of mutations arising from mis-insertion of ribonucleoside monophosphates during DNA replication. In cells lacking RNase H2, Srs2 unwinds DNA from the 5' side of a nick generated by DNA topoisomerase I at a ribonucleoside monophosphate residue. In addition, Srs2 interacts with and enhances the activity of the nuclease Exo1, to generate a DNA gap in preparation for repair. Srs2-Exo1 thus functions in a new pathway of nick processing-gap filling that mediates tolerance of ribonucleoside monophosphates in the genome. Our results have implications for understanding the basis of Aicardi-Goutieres syndrome, which stems from inactivation of the human RNase H2 complex.
PMCID:4140095
PMID: 24896181
ISSN: 0028-0836
CID: 1102852

How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells

Potenski, Catherine J; Klein, Hannah L
Ribonucleotides are misincorporated into replicating DNA due to the similarity of deoxyribonucleotides and ribonucleotides, the high concentration of ribonucleotides in the nucleus and the imperfect accuracy of replicative DNA polymerases in choosing the base with the correct sugar. Embedded ribonucleotides change certain properties of the DNA and can interfere with normal DNA transactions. Therefore, misincorporated ribonucleotides are targeted by the cell for removal. Failure to remove ribonucleotides from DNA results in an increase in genome instability, a phenomenon that has been characterized in various systems using multiple assays. Recently, however, another side to ribonucleotide misincorporation has emerged, where there is evidence for a functional role of misinserted ribonucleotides in DNA, leading to beneficial consequences for the cell. This review examines examples of both positive and negative effects of genomic ribonucleotide misincorporation in various organisms, aiming to highlight the diversity and the utility of this common replication variation.
PMCID:4176331
PMID: 25159610
ISSN: 0305-1048
CID: 1209412

Characterization of the Interaction between the Saccharomyces cerevisiae Rad51 Recombinase and the DNA Translocase Rdh54

Santa Maria, Sergio R; Kwon, Youngho; Sung, Patrick; Klein, Hannah L
The Saccharomyces cerevisiae Rdh54 protein is a member of the Swi2/Snf2 family of DNA translocases required for meiotic and mitotic recombination and DNA repair. Rdh54 interacts with the general recombinases Rad51 and Dmc1 and promotes D-loop formation with either recombinase. Rdh54 also mediates the removal of Rad51 from undamaged chromatin in mitotic cells, which prevents formation of nonrecombinogenic complexes that can otherwise become toxic for cell growth. To determine which of the mitotic roles of Rdh54 are dependent on Rad51 complex formation, we finely mapped the Rad51 interaction domain in Rdh54, generated N-terminal truncation variants, and characterized their attributes biochemically and in cells. Here, we provide evidence suggesting that the N-terminal region of Rdh54 is not necessary for the response to the DNA-damaging agent methyl methanesulfonate. However, truncation variants missing 75-200 residues at the N terminus are sensitive to Rad51 overexpression. Interestingly, a hybrid protein containing the N-terminal region of Rad54, responsible for Rad51 interaction, fused to the Swi2/Snf2 core of Rdh54 is able to effectively complement the sensitivity to both methyl methanesulfonate and excess Rad51 in rdh54 null cells. Altogether, these results reveal a distinction between damage sensitivity and Rad51 removal with regard to Rdh54 interaction with Rad51.
PMCID:3724653
PMID: 23798704
ISSN: 0021-9258
CID: 463562

Death becomes her: FBH1, DNA damage and apoptosis

Potenski, Catherine J; Klein, Hannah L
PMCID:3674059
PMID: 23588074
ISSN: 1551-4005
CID: 335592

Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast

Ferrari, Matteo; Nachimuthu, Benjamin Tamilselvan; Donnianni, Roberto Antonio; Klein, Hannah; Pellicioli, Achille
Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB. Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site. In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.
PMCID:3641649
PMID: 23473644
ISSN: 1568-7856
CID: 2369362

The PCNA Interaction Protein Box Sequence in Rad54 Is an Integral Part of Its ATPase Domain and Is Required for Efficient DNA Repair and Recombination

Burgess, Rebecca C; Sebesta, Marek; Sisakova, Alexandra; Marini, Victoria P; Lisby, Michael; Damborsky, Jiri; Klein, Hannah; Rothstein, Rodney; Krejci, Lumir
Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54 and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage and showed HR defects similar to the null mutant, despite retaining its ability to interact with HR proteins and to be recruited to HR foci in vivo. We therefore surmised that the PCNA interaction might be impaired in vivo and was unable to promote repair synthesis during HR. Indeed, the Rad54-AA mutant was defective in primer extension at the MAT locus as well as in vitro, but additional biochemical analysis revealed that this mutant also had diminished ATPase activity and an inability to promote D-loop formation. Further mutational analysis of the putative PIP-box uncovered that other phenotypically relevant mutants in this domain also resulted in a loss of ATPase activity. Therefore, we have found that although Rad54 interacts with PCNA, the PIP-box motif likely plays only a minor role in stabilizing the PCNA interaction, and rather, this conserved domain is probably an extension of the ATPase domain III.
PMCID:3869717
PMID: 24376557
ISSN: 1932-6203
CID: 741022