Try a new search

Format these results:

Searched for:

person:kleinh01

Total Results:

103


A Variant of the Breast Cancer Type 2 Susceptibility Protein (BRC) Repeat Is Essential for the RECQL5 Helicase to Interact with RAD51 Recombinase for Genome Stabilization

Islam, M Nurul; Paquet, Nicolas; Fox, David 3rd; Dray, Eloise; Zheng, Xiao-Feng; Klein, Hannah; Sung, Patrick; Wang, Weidong
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.
PMCID:3390654
PMID: 22645136
ISSN: 0021-9258
CID: 174444

Sgs1-the maestro of recombination

Klein, Hannah L; Symington, Lorraine S
The Sgs1 DNA helicase and its mammalian homolog BLM control crossover formation in mitotic cells. Zakharyevich et al. and De Muyt et al. now uncover a key role for Sgs1 in meiotic crossover regulation, which in turn reveals a joint molecule resolution pathway that produces the majority of crossovers in budding yeast.
PMID: 22500794
ISSN: 0092-8674
CID: 164366

R we there yet? R-loop hazards to finishing the journey [Comment]

Potenski, Catherine J; Klein, Hannah L
RNA:DNA hybrids in the genome are constantly being generated as a by-product of transcription; in this issue, two papers, from Helmrich et al. (2011) and Wahba et al. (2011), provide insight into how RNA:DNA hybrids lead to genetic instability.
PMID: 22195960
ISSN: 1097-2765
CID: 155640

The role of Candida albicans homologous recombination factors Rad54 and Rdh54 in DNA damage sensitivity

Hoot, Samantha J; Zheng, Xiuzhong; Potenski, Catherine J; White, Theodore C; Klein, Hannah L
ABSTRACT: BACKGROUND: The fungal pathogen Candida albicans is frequently seen in immune suppressed patients, and resistance to one of the most widely used antifungals, fluconazole (FLC), can evolve rapidly. In recent years it has become clear that plasticity of the Candida albicans genome contributes to drug resistance through loss of heterozygosity (LOH) at resistance genes and gross chromosomal rearrangements that amplify gene copy number of resistance associated genes. This study addresses the role of the homologous recombination factors Rad54 and Rdh54 in cell growth, DNA damage and FLC resistance in Candida albicans. RESULTS: The data presented here support a role for homologous recombination in cell growth and DNA damage sensitivity, as Candida albicans rad54Delta/rad54Delta mutants were hypersensitive to MMS and menadione, and had an aberrant cell and nuclear morphology. The Candida albicans rad54Delta/rad54Delta mutant was defective in invasion of Spider agar, presumably due to the altered cellular morphology. In contrast, mutation of the related gene RDH54 did not contribute significantly to DNA damage resistance and cell growth, and deletion of either Candida albicans RAD54 or Candida albicans RDH54 did not alter FLC susceptibility. CONCLUSIONS: Together, these results support a role for homologous recombination in genome stability under nondamaging conditions. The nuclear morphology defects in the rad54Delta/rad54Delta mutants show that Rad54 performs an essential role during mitotic growth and that in its absence, cells arrest in G2. The viability of the single mutant rad54Delta/rad54Delta and the inability to construct the double mutant rad54Delta/rad54Delta rdh54Delta/rdh54Delta suggests that Rdh54 can partially compensate for Rad54 during mitotic growth
PMCID:3197502
PMID: 21951709
ISSN: 1471-2180
CID: 139736

Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors

Chi, Peter; Kwon, Youngho; Visnapuu, Mari-Liis; Lam, Isabel; Santa Maria, Sergio R; Zheng, Xiuzhong; Epshtein, Anastasiya; Greene, Eric C; Sung, Patrick; Klein, Hannah L
The Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between the phenotypes of the null allele mutants suggest that they play different roles in vivo. Through the isolation of a novel RAD51 allele encoding a protein with reduced affinity for DNA, we provide evidence that Rad54 and Rdh54 have different in vivo interactions with Rad51. The mutant Rad51 forms a complex on duplex DNA that is more susceptible to dissociation by Rdh54. This Rad51 variant distinguishes the in vivo functions of Rad54 and Rdh54, leading to the conclusion that two translocases remove Rad51 from different substrates in vivo. Additionally, we show that a third Swi2-like factor, Uls1, contributes toward Rad51 clearance from chromatin in the absence of Rad54 and Rdh54, and define a hierarchy of action of the Swi2-like translocases for chromosome damage repair
PMCID:3159464
PMID: 21558173
ISSN: 1362-4962
CID: 136937

The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores

Bermejo, Rodrigo; Capra, Thelma; Jossen, Rachel; Colosio, Arianna; Frattini, Camilla; Carotenuto, Walter; Cocito, Andrea; Doksani, Ylli; Klein, Hannah; Gomez-Gonzalez, Belen; Aguilera, Andres; Katou, Yuki; Shirahige, Katsuhiko; Foiani, Marco
Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes
PMCID:3160733
PMID: 21784245
ISSN: 1097-4172
CID: 136488

Molecular biology: The expanding arena of DNA repair [Comment]

Potenski, Catherine J; Klein, Hannah L
PMID: 21368822
ISSN: 1476-4687
CID: 134138

Methods to study mitotic homologous recombination and genome stability

Zheng, Xiuzhong; Epstein, Anastasiya; Klein, Hannah L
Spontaneous mitotic recombination occurs in response to DNA damage incurred during DNA replication or from lesions that do not block replication but leave recombinogenic substrates such as single-stranded DNA gaps. Other types of damages result in general genome instability such as chromosome loss, chromosome fragmentation, and chromosome rearrangements. The genome is kept intact through recombination, repair, replication, checkpoints, and chromosome organization functions. Therefore when these pathways malfunction, genomic instabilities occur. Here we outline some general strategies to monitor a subset of the genomic instabilities: spontaneous mitotic recombination and chromosome loss, in both haploid and diploid cells. The assays, while not inclusive of all genome instability assays, give a broad assessment of general genome damage or inability to repair damage in various genetic backgrounds
PMID: 21660685
ISSN: 1940-6029
CID: 134456

Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth

Shah, Parisha P; Zheng, Xiuzhong; Epshtein, Anastasiya; Carey, Jeffrey N; Bishop, Douglas K; Klein, Hannah L
Purified DNA translocases Rdh54 and Rad54 can dissociate complexes formed by eukaryotic RecA-like recombinases on double-stranded DNA. Here, we show that Rad51 complexes are dissociated by these translocases in mitotic cells. Rad51 overexpression blocked growth of cells deficient in Rdh54 activity. This toxicity was associated with accumulation of Rad51 foci on undamaged chromatin. At normal Rad51 levels, rdh54 deficiency resulted in slight elevation of Rad51 foci. A triple mutant lacking Rdh54, Rad54, and a third Swi2/Snf2 homolog Uls1 accumulated Rad51 foci, grew slowly, and suffered chromosome loss. Thus, Uls1 and Rad54 can partially substitute for Rdh54 in the removal of toxic, nondamage-associated Rad51-DNA complexes. Additional data suggest that the function of Rdh54 and Rad54 in removal of Rad51 foci is significantly specialized; Rad54 predominates for removal of damage-associated foci, and Rdh54 predominates for removal of nondamage-associated foci
PMCID:2946244
PMID: 20864034
ISSN: 1097-4164
CID: 147665

Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair

Saponaro, Marco; Callahan, Devon; Zheng, Xiuzhong; Krejci, Lumir; Haber, James E; Klein, Hannah L; Liberi, Giordano
Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA-independent role and appears to have an attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during homologous recombinational repair
PMCID:2829061
PMID: 20195513
ISSN: 1553-7390
CID: 107900