Try a new search

Format these results:

Searched for:

person:landsd02

in-biosketch:yes

Total Results:

47


Acceptance and Benefits of Electro-Acoustic Stimulation for Conventional-Length Electrode Arrays

Spitzer, Emily R; Waltzman, Susan B; Landsberger, David M; Friedmann, David R
BACKGROUND:Prior studies have shown an advantage for electro-acoustic stimulation (EAS) in cochlear implant (CI) patients with residual hearing, but the degree of benefit can vary. The objective was to explore which factors relate to performance with and acceptance of EAS for CI users with conventional-length electrodes. METHODS:A retrospective chart review was conducted for adults with an average threshold of 75 dB hearing loss or better across 250 and 500 Hz preoperatively (n = 83). All patients underwent cochlear implantation with a conventional-length electrode. Low-frequency audiometric thresholds were measured at initial activation as well as 3 and 12 months postoperatively to determine who met the criteria for EAS. Speech perception for CNC words and AzBio sentences in quiet and +10 dB SNR noise was evaluated 3 and 12 months after activation. RESULTS:Speech perception in quiet and noise was similar regardless of whether or not the patient was eligible for EAS. Less than half of the patients who met the EAS criteria chose to use it, citing reasons such as physical discomfort or lack of perceived benefit. EAS users performed better on CNC words but not sentence recognition than EAS nonusers. CONCLUSIONS:EAS use is dependent on audiologic and nonaudiologic issues. Hearing preservation is possible with conventional electrodes, but hearing preservation alone does not guarantee superior speech perception.
PMID: 32721977
ISSN: 1421-9700
CID: 4540622

Music Is More Enjoyable With Two Ears, Even If One of Them Receives a Degraded Signal Provided By a Cochlear Implant

Landsberger, David M; Vermeire, Katrien; Stupak, Natalia; Lavender, Annette; Neukam, Jonathan; Van de Heyning, Paul; Svirsky, Mario A
OBJECTIVES/OBJECTIVE:Cochlear implants (CIs) restore speech perception in quiet but they also eliminate or distort many acoustic cues that are important for music enjoyment. Unfortunately, quantifying music enjoyment by CI users has been difficult because comparisons must rely on their recollection of music before they lost their hearing. Here, we aimed to assess music enjoyment in CI users using a readily interpretable reference based on acoustic hearing. The comparison was done by testing "single-sided deafness" (SSD) patients who have normal hearing (NH) in one ear and a CI in the other ear. The study also aimed to assess binaural musical enjoyment, with the reference being the experience of hearing with a single NH ear. Three experiments assessed the effect of adding different kinds of input to the second ear: electrical, vocoded, or unmodified. DESIGN/METHODS:In experiment 1, music enjoyment in SSD-CI users was investigated using a modified version of the MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor) method. Listeners rated their enjoyment of song segments on a scale of 0 to 200, where 100 represented the enjoyment obtained from a song segment presented to the NH ear, 0 represented a highly degraded version of the same song segment presented to the same ear, and 200 represented enjoyment subjectively rated as twice as good as the 100 reference. Stimuli consisted of acoustic only, electric only, acoustic and electric, as well as other conditions with low pass filtered acoustic stimuli. Acoustic stimulation was provided by headphone to the NH ear and electric stimulation was provided by direct audio input to the subject's speech processor. In experiment 2, the task was repeated using NH listeners who received vocoded stimuli instead of electric stimuli. Experiment 3 tested the effect of adding the same unmodified song segment to the second ear, also in NH listeners. RESULTS:Music presented through the CI only was very unpleasant, with an average rating of 20. Surprisingly, the combination of the unpleasant CI signal in one ear with acoustic stimulation in the other ear was rated more enjoyable (mean = 123) than acoustic processing alone. Presentation of the same monaural musical signal to both ears in NH listeners resulted with even greater enhancement of the experience compared with presentation to a single ear (mean = 159). Repeating the experiment using a vocoder to one ear of NH listeners resulted in interference rather than enhancement. CONCLUSIONS:Music enjoyment from electric stimulation is extremely poor relative to a readily interpretable NH baseline for CI-SSD listeners. However, the combination of this unenjoyable signal presented through a CI and an unmodified acoustic signal presented to a NH (or near-NH) contralateral ear results in enhanced music enjoyment with respect to the acoustic signal alone. Remarkably, this two-ear enhancement experienced by CI-SSD listeners represents a substantial fraction of the two-ear enhancement seen in NH listeners. This unexpected benefit of electroacoustic auditory stimulation will have to be considered in theoretical accounts of music enjoyment and may facilitate the quest to enhance music enjoyment in CI users.
PMID: 31469701
ISSN: 1538-4667
CID: 4054672

Validating a Quick Spectral Modulation Detection Task

Landsberger, David M; Dwyer, Robert T; Stupak, Natalia; Gifford, René H
OBJECTIVES/OBJECTIVE:The Quick Spectral Modulation Detection (QSMD) test provides a quick and clinically implementable spectral resolution estimate for cochlear implant (CI) users. However, the original QSMD software (QSMD(MySound)) has technical and usability limitations that prevent widespread distribution and implementation. In this article, we introduce a new software package EasyQSMD, which is freely available software with the goal of both simplifying and standardizing spectral resolution measurements. DESIGN/METHODS:QSMD was measured for 20 CI users using both software packages. RESULTS:No differences between the two software packages were detected, and based on the 95% confidence interval of the difference between tests, the difference between the tests is expected to be <2% points. The average test duration was under 4 minutes. CONCLUSIONS:EasyQSMD is considered functionally equivalent to QSMD(MySound) providing a clinically feasible and quick estimate of spectral resolution for CI users.
PMID: 31033635
ISSN: 1538-4667
CID: 3854362

ALTIS: A new algorithm for adaptive long-term SNR estimation in multi-talker babble

Soleymani, Roozbeh; Selesnick, Ivan W; Landsberger, David M
We introduce a real-time capable algorithm which estimates the long-term signal to noise ratio (SNR) of the speech in multi-talker babble noise. In real-time applications, long-term SNR is calculated over a sufficiently long moving frame of the noisy speech ending at the current time. The algorithm performs the real-time long-term SNR estimation by averaging "speech-likeness" values of multiple consecutive short-frames of the noisy speech which collectively form a long-frame with an adaptive length. The algorithm is calibrated to be insensitive to short-term fluctuations and transient changes in speech or noise level. However, it quickly responds to non-transient changes in long-term SNR by adjusting the duration of the long-frame on which the long-term SNR is measured. This ability is obtained by employing an event detector and adaptive frame duration. The event detector identifies non-transient changes of the long-term SNR and optimizes the duration of the long-frame accordingly. The algorithm was trained and tested for randomly generated speech samples corrupted with multi-talker babble. In addition to its ability to provide an adaptive long-term SNR estimation in a dynamic noisy situation, the evaluation results show that the algorithm outperforms the existing overall SNR estimation methods in multi-talker babble over a wide range of number of talkers and SNRs. The relatively low computational cost and the ability to update the estimated long-term SNR several times per second make this algorithm capable of operating in real-time speech processing applications.
PMCID:7405887
PMID: 32773961
ISSN: 0885-2308
CID: 4563372

Spectral-temporally modulated ripple test Lite for computeRless Measurement (SLRM): A Nonlinguistic Test for Audiology Clinics

Landsberger, David M; Stupak, Natalia; Aronoff, Justin M
OBJECTIVES/OBJECTIVE:Many clinics are faced with the difficulty of evaluating performance in patients who speak a language for which there are no validated tests. It would be desirable to have a nonlinguistic method of evaluating these patients. Spectral ripple tests are nonlinguistic and highly correlated with speech identification performance. However, they are generally not amenable to clinical environments as they typically require the use of computers which are often not found in clinic sound booths. In this study, we evaluate the Spectral-temporally Modulated Ripple Test (SMRT) Lite for computeRless Measurement (SLRM), which is a new variant of the adaptive SMRT that can be implemented via a CD player. DESIGN/METHODS:SMRT and SLRM were measured for 10 normal hearing and 10 cochlear implant participants. RESULTS:Performance on the two tests was highly correlated (r = 0.97). CONCLUSIONS:The results suggest that SLRM can be used interchangeably with SMRT but can be implemented without a computer.
PMID: 30870239
ISSN: 1538-4667
CID: 3733372

Pleasantness Ratings for Harmonic Intervals With Acoustic and Electric Hearing in Unilaterally Deaf Cochlear Implant Patients

Spitzer, Emily R; Landsberger, David M; Friedmann, David R; Galvin, John J
Background/UNASSIGNED:Harmony is an important part of tonal music that conveys context, form and emotion. Two notes sounded simultaneously form a harmonic interval. In normal-hearing (NH) listeners, some harmonic intervals (e.g., minor 2nd, tritone, major 7th) typically sound more dissonant than others (e.g., octave, major 3rd, 4th). Because of the limited spectro-temporal resolution afforded by cochlear implants (CIs), music perception is generally poor. However, CI users may still be sensitive to relative dissonance across intervals. In this study, dissonance ratings for harmonic intervals were measured in 11 unilaterally deaf CI patients, in whom ratings from the CI could be compared to those from the normal ear. Methods/UNASSIGNED:Stimuli consisted of pairs of equal amplitude MIDI piano tones. Intervals spanned a range of two octaves relative to two root notes (F3 or C4). Dissonance was assessed in terms of subjective pleasantness ratings for intervals presented to the NH ear alone, the CI ear alone, and both ears together (NH + CI). Ratings were collected for both root notes for within- and across-octave intervals (1-12 and 13-24 semitones). Participants rated the pleasantness of each interval by clicking on a line anchored with "least pleasant" and "most pleasant." A follow-up experiment repeated the task with a smaller stimulus set. Results/UNASSIGNED:< 0.001). Ratings were similar between NH-only and NH + CI listening, with no significant binaural enhancement/interference. The follow-up tests showed that ratings were reliable for the least and most pleasant intervals. Discussion/UNASSIGNED:Although pleasantness ratings were less differentiated for the CI ear than the NH ear, there were similarities between the two listening modes. Given the lack of spectro-temporal detail needed for harmonicity-based distinctions, temporal envelope interactions (within and across channels) associated with a perception of roughness may contribute to dissonance perception for harmonic intervals with CI-only listening.
PMCID:6733976
PMID: 31551686
ISSN: 1662-4548
CID: 4105492

The relationship between time and place coding with cochlear implants with long electrode arrays

Landsberger, David M; Marozeau, Jeremy; Mertens, Griet; Van de Heyning, Paul
The auditory system can theoretically encode frequencies by either the rate or place of stimulation within the cochlea. Previous work with cochlear implants has demonstrated that both changes in timing and place can be described as pitch changes but are perceptually orthogonal. Using multidimensional scaling, the present experiment extends the previous findings that timing and place changes are perceptually orthogonal into the cochlear apex using long 31-mm electrode arrays. However, temporal cues seem to be more reliable across subjects at the apex while place cues seem to be more reliable at the middle of the cochlea.
PMID: 30599674
ISSN: 1520-8524
CID: 3562802

The effect of polarity order and electrode-activation order on loudness in cochlear implant users

Todd, Ann E; Landsberger, David M
This study examined the interaction between polarity and electrode-activation order on loudness in cochlear implant users. Pulses were presented with the polarity of the leading phase alternating or constant across channels. Electrode-activation order was either consecutive or staggered. Staggered electrode-activation orders required less current for equal loudness than consecutive orders with constant polarity. Consecutive electrode-activation orders required less current than staggered orders with alternating polarity. The results support the hypothesis that crosstalk between channels can interfere with or facilitate neuronal activation depending on polarity.
PMCID:6086690
PMID: 30180697
ISSN: 1520-8524
CID: 3274702

Perceptual changes with monopolar and phantom electrode stimulation

Klawitter, Silke; Landsberger, David M; Büchner, Andreas; Nogueira, Waldo
Phantom electrode (PE) stimulation is achieved by simultaneously stimulating out-of-phase from two adjacent intra-cochlear electrodes with different amplitudes. If the basal electrode stimulates with a smaller amplitude than the apical electrode of the pair, the resulting electrical field is pushed away from the basal electrode producing a lower pitch. There is great interest in using PE stimulation in a processing strategy as it can be used to provide stimulation to regions of the cochlea located more apically than the most apical contact on the electrode array. The result is that even lower pitch sensations can be provided without additional risk of a deeper insertion. However, it is unknown if there are perceptual differences between monopolar (MP) and PE stimulation other than a shift in place pitch. Furthermore, it is unknown if the effect and magnitude of changing from MP to PE stimulation is dependent on electrode location. This study investigates the perceptual differences (including pitch and other sound quality differences) at multiple electrode positions using MP and PE stimulation using both a multidimensional scaling procedure (MDS) and a traditional scaling procedure. 10 Advanced Bionics users reported the perceptual distances between 5 single electrode (typically 1, 3, 5, 7, and 9) stimuli in either MP or PE (σ = 0.5) mode. Subjects were asked to report how perceptually different each pair of stimuli were using any perceived differences except loudness. Subsequently, each stimulus was presented in isolation and subjects scaled how "high" or how "clean" each sounded. Results from the MDS task suggest that perceptual differences between MP and PE stimulation can be explained by a single dimension. The traditional scaling suggests that the single dimension is place pitch. PE stimulation elicits lower pitch perceptions in all cochlear regions. Analysis of Cone Beam Computer Tomography (CBCT) data suggests that PE stimulation may be more effective at the apical part of the cochlea. PE stimulation can be used for new sound coding strategies in order to extend the pitch range for cochlear implant (CI) users without perceptual side effects.
PMCID:5809286
PMID: 29325874
ISSN: 1878-5891
CID: 2906362

SEDA: A tunable Q-factor wavelet-based noise reduction algorithm for multi-talker babble

Soleymani, Roozbeh; Selesnick, Ivan W; Landsberger, David M
We introduce a new wavelet-based algorithm to enhance the quality of speech corrupted by multi-talker babble noise. The algorithm comprises three stages: The first stage classifies short frames of the noisy speech as speech-dominated or noise-dominated. We design this classifier specifically for multi-talker babble noise. The second stage performs preliminary de-nosing of noisy speech frames using oversampled wavelet transforms and parallel group thresholding. The final stage performs further denoising by attenuating residual high frequency components in the signal produced by the second stage. A significant improvement in intelligibility and quality was observed in evaluation tests of the algorithm with cochlear implant users.
PMCID:5875444
PMID: 29606781
ISSN: 0167-6393
CID: 3025482