Try a new search

Format these results:

Searched for:

person:ludovd01

in-biosketch:yes

Total Results:

25


Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities

Noval, Maria G; Kaczmarek, Maria E; Koide, Akiko; Rodriguez-Rodriguez, Bruno A; Louie, Ping; Tada, Takuya; Hattori, Takamitsu; Panchenko, Tatyana; Romero, Larizbeth A; Teng, Kai Wen; Bazley, Andrew; de Vries, Maren; Samanovic, Marie I; Weiser, Jeffrey N; Aifantis, Ioannis; Cangiarella, Joan; Mulligan, Mark J; Desvignes, Ludovic; Dittmann, Meike; Landau, Nathaniel R; Aguero-Rosenfeld, Maria; Koide, Shohei; Stapleford, Kenneth A
Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.
PMCID:7946906
PMID: 33692390
ISSN: 2045-2322
CID: 4809372

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Hegu, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; De Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:7924286
PMID: 33655261
ISSN: n/a
CID: 4801472

A comparative analysis of SARS-CoV-2 antivirals in human airway models characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19 [PrePrint]

de Vries, Maren; Mohamed, Adil S; Prescott, Rachel A; Valero-Jimenez, Ana M; Desvignes, Ludovic; O'Connor, Rebecca; Steppan, Claire; Devlin, Joseph C; Ivanova, Ellie; Herrera, Alberto; Schinlever, Austin; Loose, Paige; Ruggles, Kelly; Koralov, Sergei B; Anderson, Annaliesa S; Binder, Joseph; Dittmann, Meike
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19). There is a dire need for novel effective antivirals to treat COVID-19, as the only approved direct-acting antiviral to date is remdesivir, targeting the viral polymerase complex. A potential alternate target in the viral life cycle is the main SARS-CoV-2 protease 3CLpro (Mpro). The drug candidate PF-00835231 is the active compound of the first anti-3CLpro regimen in clinical trials. Here, we perform a comparative analysis of PF-00835231, the pre-clinical 3CLpro inhibitor GC-376, and the polymerase inhibitor remdesivir, in alveolar basal epithelial cells modified to express ACE2 (A549+ACE2 cells). We find PF-00835231 with at least similar or higher potency than remdesivir or GC-376. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps in A549+ACE2 cells and validates PF-00835231's early time of action. In a model of the human polarized airway epithelium, both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 at low micromolar concentrations. Finally, we show that the efflux transporter P-glycoprotein, which was previously suggested to diminish PF-00835231's efficacy based on experiments in monkey kidney Vero E6 cells, does not negatively impact PF-00835231 efficacy in either A549+ACE2 cells or human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective SARS-CoV-2 antiviral and addresses concerns that emerged based on prior studies in non-human in vitro models.
PMID: 32869028
ISSN: 2692-8205
CID: 5285452

Evidenced-Based Guidelines For Tuberculosis Screening Before Biologic Treatment Initiation [Letter]

Shah, Payal; Rebick, Gabriel; Bajaj, Shirin; Desvignes, Ludovic
PMID: 32222451
ISSN: 1097-6787
CID: 4371212

High titers of multiple antibody isotypes against the SARS-CoV-2 spike receptor-binding domain and nucleoprotein associate with better neutralization [PrePrint]

Noval, Maria G; Kaczmarek, Maria E; Koide, Akiko; Rodriguez-Rodriguez, Bruno A; Louie, Ping; Tada, Takuya; Hattori, Takamitsu; Panchenko, Tatyana; Romero, Larizbeth A; Teng, Kai Wen; Bazley, Andrew; de Vries, Maren; Samanovic, Marie I; Weiser, Jeffrey N; Aifantis, Ioannis; Cangiarella, Joan; Mulligan, Mark J; Desvignes, Ludovic; Dittmann, Meike; Landau, Nathaniel R; Aguero-Rosenfeld, Maria; Koide, Shohei; Stapleford, Kenneth A
ORIGINAL:0014801
ISSN: 2692-8205
CID: 4636922

Limited antimycobacterial efficacy of epitope peptide administration despite enhanced antigen-specific CD4 T cell activation

Ernst, Joel D; Cornelius, Amber; Desvignes, Ludovic; Tavs, Jacqueline; Norris, Brian A
Infection with M. tuberculosis is associated with inconsistent and incomplete elimination of the bacteria, despite development of antigen-specific T cell responses. One mechanism employed by M. tuberculosis is to limit availability of antigen for activation of CD4 T cells. We examined the utility of systemic administration of epitope peptides to activate pre-existing T cells in mice infected with M. tuberculosis. We found that systemic peptide administration: 1) selectively activates T cells specific for the epitope peptide; 2) loads MHC class II on lung macrophages and dendritic cells; 3) activates CD4 T cells in the lung parenchyma; 4) has little antimycobacterial activity. Further studies revealed that CD4 T cells in lung lesions are distant from the infected cells, suggesting that, even if they can be activated, the positioning of CD4 T cells and their direct interactions with infected cells may be limiting determinants of immunity in TB.
PMID: 29548008
ISSN: 1537-6613
CID: 2993242

STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection

Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan
Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-gamma production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-gamma production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-gamma and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.
PMCID:4518689
PMID: 25938788
ISSN: 1558-8238
CID: 1569062

Beyond macrophages: the diversity of mononuclear cells in tuberculosis

Srivastava, Smita; Ernst, Joel D; Desvignes, Ludovic
Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB), is an intracellular pathogen of mononuclear phagocytes. Although M. tuberculosis has traditionally been thought to survive and replicate in macrophages, recent work in our laboratory and others has revealed that M. tuberculosis infects multiple subsets of mononuclear phagocytes in vivo and in vitro. In experimental animals, M. tuberculosis infects no fewer than five distinct cell subsets in the lungs, including resident alveolar macrophages and 4 types of cells that recruited to the lungs in response to inflammatory signals: neutrophils, monocytes, interstitial macrophages, and dendritic cells. A characteristic of the adaptive immune response in TB is that it is delayed for several weeks following infection, and we have determined that this delay is due to prolonged residence of the bacteria in lung phagocytes prior to acquisition of the bacteria by dendritic cells. Among the mechanisms used by M. tuberculosis to delay acquisition by dendritic cells is to inhibit apoptosis of alveolar macrophages and neutrophils, which sequester the bacteria and prevent their acquisition by dendritic cells in the early stages of infection. We hypothesize that each infected cell subset makes a distinct contribution to the overall biology of M. tuberculosis and allows the bacteria to evade elimination by T-cell responses and to avoid rapid killing by antimycobacterial drugs.
PMCID:4203409
PMID: 25319335
ISSN: 0105-2896
CID: 1310232

Induction of neural guidance molecule expression in macrophages and dendritic cells by Mycobacterium tuberculosis [Meeting Abstract]

Bracho-Sanchez, Edith; Ramkhelawon, Bhama; Desvignes, Ludovic; Moore, Kathryn; Ernst, Joel
ISI:000322987102194
ISSN: 0022-1767
CID: 540702

Taking sides: interferons in leprosy

Desvignes, Ludovic P; Ernst, Joel D
In a recent Science paper, Teles et al. (2013) show that type I and II interferons (IFNs) are reciprocally expressed in the polar immune forms of leprosy, with type I IFNs inducing IL-10 that interferes with the antimycobacterial effects of type II IFNs (IFNgamma) at the site of infection.
PMCID:3671607
PMID: 23601100
ISSN: 1931-3128
CID: 304952