Try a new search

Format these results:

Searched for:

person:ludovd01

in-biosketch:yes

Total Results:

25


Dynamic Roles of Type I and Type II IFNs in Early Infection with Mycobacterium tuberculosis

Desvignes, Ludovic; Wolf, Andrea J; Ernst, Joel D
Although the protective role of type II IFN, or IFN-gamma, against Mycobacterium tuberculosis has been established, the effects of type I IFNs are still unclear. One potential confounding factor is the overlap of function between the two signaling pathways. We used mice carrying null mutations in the type I IFNR, type II IFNR, or both and compared their immune responses to those of wild-type mice following aerosol infection with M. tuberculosis. We discovered that, in the absence of a response to IFN-gamma, type I IFNs play a nonredundant protective role against tuberculosis. Mice unable to respond to both types of IFNs had more severe lung histopathology for similar bacterial loads and died significantly earlier than did mice with impaired IFN-gamma signaling alone. We excluded a role for type I IFN in T cell recruitment, which was IFN-gamma dependent, whereas both types of IFNs were required for optimal NK cell recruitment to the lungs. Type I IFN had a time-dependent influence on the composition of lung myeloid cell populations, in particular by limiting the abundance of M. tuberculosis-infected recruited macrophages after the onset of adaptive immunity. We confirmed that response to IFN-gamma was essential to control intracellular mycobacterial growth, without any additional effect of type I IFN. Together, our results imply a model in which type I IFN limit the number of target cells that M. tuberculosis can infect in the lungs, whereas IFN-gamma enhances their ability to restrict bacterial growth.
PMCID:3370955
PMID: 22566567
ISSN: 0022-1767
CID: 169247

Mycobacterium tuberculosis Inhibits Neutrophil Apoptosis, Leading to Delayed Activation of Naive CD4 T cells

Blomgran, Robert; Desvignes, Ludovic; Briken, Volker; Ernst, Joel D
Mycobacterium tuberculosis promotes its replication by inhibiting the apoptosis of infected macrophages. A proapoptotic M. tuberculosis mutant lacking nuoG, a subunit of the type I NADH dehydrogenase complex, exhibits attenuated growth in vivo, indicating that this virulence mechanism is essential. We show that M. tuberculosis also suppresses neutrophil apoptosis. Compared to wild-type, the nuoG mutant spread to a larger number of lung phagocytic cells. Consistent with the shorter lifespan of infected neutrophils, infection with the nuoG mutant resulted in fewer bacteria per infected neutrophil, accelerated bacterial acquisition by dendritic cells, earlier trafficking of these dendritic cells to lymph nodes, and faster CD4 T cell priming. Neutrophil depletion abrogated accelerated CD4 T cell priming by the nuoG mutant, suggesting that inhibiting neutrophil apoptosis delays adaptive immunity in tuberculosis. Thus, pathogen modulation of apoptosis is beneficial at multiple levels, and enhancing phagocyte apoptosis promotes CD4 as well as CD8 T cell responses
PMCID:3266554
PMID: 22264515
ISSN: 1934-6069
CID: 150571

Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis

Desvignes, Ludovic; Ernst, Joel D
Immunity to Mycobacterium tuberculosis in humans and in mice requires interferon gamma (IFN-gamma). Whereas IFN-gamma has been studied extensively for its effects on macrophages in tuberculosis, we determined that protective immunity to tuberculosis also requires IFN-gamma-responsive nonhematopoietic cells. Bone marrow chimeric mice with IFN-gamma-unresponsive lung epithelial and endothelial cells exhibited earlier mortality and higher bacterial burdens than control mice, underexpressed indoleamine-2,3-dioxygenase (Ido1) in lung endothelium and epithelium, and overexpressed interleukin-17 (IL-17) with massive neutrophilic inflammation in the lungs. We also found that the products of IDO catabolism of tryptophan selectively inhibit IL-17 production by Th17 cells, by inhibiting the action of IL-23. These results reveal a previously unsuspected role for IFN-gamma responsiveness in nonhematopoietic cells in regulation of immunity to M. tuberculosis and illustrate the role of IDO in the inhibition of Th17 cell responses
PMCID:2807991
PMID: 20064452
ISSN: 1097-4180
CID: 106204

Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs

Wolf, Andrea J; Desvignes, Ludovic; Linas, Beth; Banaiee, Niaz; Tamura, Toshiki; Takatsu, Kiyoshi; Ernst, Joel D
The onset of the adaptive immune response to Mycobacterium tuberculosis is delayed compared with that of other infections or immunization, and allows the bacterial population in the lungs to expand markedly during the preimmune phase of infection. We used adoptive transfer of M. tuberculosis Ag85B-specific CD4(+) T cells to determine that the delayed adaptive response is caused by a delay in initial activation of CD4(+) T cells, which occurs earliest in the local lung-draining mediastinal lymph node. We also found that initial activation of Ag85B-specific T cells depends on production of antigen by bacteria in the lymph node, despite the presence of 100-fold more bacteria in the lungs. Although dendritic cells have been found to transport M. tuberculosis from the lungs to the local lymph node, airway administration of LPS did not accelerate transport of bacteria to the lymph node and did not accelerate activation of Ag85B-specific T cells. These results indicate that delayed initial activation of CD4(+) T cells in tuberculosis is caused by the presence of the bacteria in a compartment that cannot be mobilized from the lungs to the lymph node, where initial T cell activation occurs
PMCID:2234384
PMID: 18158321
ISSN: 1540-9538
CID: 75722

Codominance of TLR2-dependent and TLR2-independent modulation of MHC class II in Mycobacterium tuberculosis infection in vivo

Kincaid, Eleanor Z; Wolf, Andrea J; Desvignes, Ludovic; Mahapatra, Sebabrata; Crick, Dean C; Brennan, Patrick J; Pavelka, Martin S Jr; Ernst, Joel D
Mycobacterium tuberculosis is an exceptionally successful human pathogen. A major component of this success is the ability of the bacteria to infect immunocompetent individuals and to evade eradication by an adaptive immune response that includes production of the macrophage-activating cytokine, IFN-gamma. Although IFN-gamma is essential for arrest of progressive tuberculosis, it is insufficient for efficacious macrophage killing of the bacteria, which may be due to the ability of M. tuberculosis to inhibit selected macrophage responses to IFN-gamma. In vitro studies have determined that mycobacterial lipoproteins and other components of the M. tuberculosis cell envelope, acting as agonists for TLR2, inhibit IFN-gamma induction of MHC class II. In addition, M. tuberculosis peptidoglycan and IL-6 secreted by infected macrophages inhibit IFN-gamma induction of MHC class II in a TLR2-independent manner. To determine whether TLR2-dependent inhibition of macrophage responses to IFN-gamma is quantitatively dominant over the TLR2-independent mechanisms in vivo, we prepared mixed bone marrow chimeric mice in which the hemopoietic compartment was reconstituted with a mixture of TLR(+/+) and TLR2(-/-) cells. When the chimeric mice were infected with M. tuberculosis, the expression of MHC class II on TLR2(+/+) and TLR2(-/-) macrophages from the lungs of individual infected chimeric mice was indistinguishable. These results indicate that TLR2-dependent and -independent mechanisms of inhibition of responses to IFN-gamma are equivalent in vivo, and that M. tuberculosis uses multiple pathways to abrogate the action of an important effector of adaptive immunity. This work was supported by National Institutes of Health Grants AI 065357-AI 020010
PMID: 17709534
ISSN: 0022-1767
CID: 75367