Try a new search

Format these results:

Searched for:



Total Results:


Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth

Sharma, Utkarsh; Chang, Ernest W; Yun, Seok H
Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 microm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 mum. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 microm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 microm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 mum and 14 mum, respectively. We imaged several phantom and biological samples using 1.3 mum and 1.7 microm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 microm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons.
PMID: 19030057
ISSN: 1094-4087
CID: 5261942

Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography

Kobler, James B; Chang, Ernest W; Zeitels, Steven M; Yun, Seok-Hyun
OBJECTIVES/HYPOTHESIS/OBJECTIVE:Optical coherence tomography (OCT) can provide high-resolution ( approximately 10-15 microm/pixel) images of vocal fold microanatomy, as demonstrated previously. We explored physiologically triggered Fourier-domain OCT for imaging vocal folds during phonation. The goal is to visualize dynamic histological cross sections and four-dimensional data sets where multiple planes are displayed in synchronized motion. If feasible, this approach could be a useful research tool and spur development of new clinical instrumentation. STUDY DESIGN/METHODS:A Fourier-domain, triggered OCT system was created and tested in experiments on excised calf larynges to obtain preliminary observations and characterize important factors affecting image quality. METHODS:Larynges were imaged during phonation driven by warm, humidified air. A subglottal pressure signal was used to synchronize the OCT system with the phonatory cycle. Image sequences were recorded as functions of anatomical location or subglottal pressure. Implant materials were also imaged during vibration, both in isolation and after injection into a vocal fold. RESULTS:Oscillations of epithelium and lamina propria were observed, and parameters such as shape, amplitude, and velocity of the vocal fold mucosal waves were found to be measurable. Ripples of mucosal wave as small as 100 microm in vertical height were clearly visible. Internal strain was also observed in normal and implanted vocal folds. CONCLUSIONS:Four-dimensional OCT of the vocal fold may help to more directly relate biomechanics to anatomy and disease. It may also be useful for assaying the functional rheology of implants in the context of real tissue. With further development, this technology has potential for clinical endoscopic application.
PMID: 20564724
ISSN: 1531-4995
CID: 5261952

Triggered optical coherence tomography for capturing rapid periodic motion

Chang, Ernest W; Kobler, James B; Yun, Seok H
Quantitative cross-sectional imaging of vocal folds during phonation is potentially useful for diagnosis and treatments of laryngeal disorders. Optical coherence tomography (OCT) is a powerful technique, but its relatively low frame rates makes it challenging to visualize rapidly vibrating tissues. Here, we demonstrate a novel method based on triggered laser scanning to capture 4-dimensional (4D) images of samples in motu at audio frequencies over 100 Hz. As proof-of-concept experiments, we applied this technique to imaging the oscillations of biopolymer gels on acoustic vibrators and aerodynamically driven vibrations of the vocal fold in an ex vivo calf larynx model. Our results suggest that triggered 4D OCT may be useful in understanding and assessing the function of vocal folds and developing novel treatments in research and clinical settings.
PMID: 22355567
ISSN: 2045-2322
CID: 5261962

Subnanometer optical coherence tomographic vibrography

Chang, Ernest W; Kobler, James B; Yun, Seok H
The ability to quantify and visualize submicrometer-scale oscillatory motions of objects in three dimensions has a wide range of application in acoustics, materials sciences, and medical imaging. Here we demonstrate that volumetric snapshots of rapid periodic motion can be captured using optical coherence tomography (OCT) with subnanometer-scale motion sensitivity and microsecond-scale temporal resolution. This technique, termed OCT vibrography, was applied to generate time-resolved volumetric vibrographs of a miniature drum driven acoustically at several kilohertz.
PMID: 22940988
ISSN: 1539-4794
CID: 5261972

Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles

Chang, Ernest W; Cheng, Jeffrey T; Röösli, Christof; Kobler, James B; Rosowski, John J; Yun, Seok Hyun
Efficient transfer of sound by the middle ear ossicles is essential for hearing. Various pathologies can impede the transmission of sound and thereby cause conductive hearing loss. Differential diagnosis of ossicular disorders can be challenging since the ossicles are normally hidden behind the tympanic membrane (TM). Here we describe the use of a technique termed optical coherence tomography (OCT) vibrography to view the sound-induced motion of the TM and ossicles simultaneously. With this method, we were able to capture three-dimensional motion of the intact TM and ossicles of the chinchilla ear with nanometer-scale sensitivity at sound frequencies from 0.5 to 5 kHz. The vibration patterns of the TM were complex and highly frequency dependent with mean amplitudes of 70-120 nm at 100 dB sound pressure level. The TM motion was only marginally sensitive to stapes fixation and incus-stapes joint interruption; however, when additional information derived from the simultaneous measurement of ossicular motion was added, it was possible to clearly distinguish these different simulated pathologies. The technique may be applicable to clinical diagnosis in Otology and to basic research in audition and acoustics.
PMID: 23811181
ISSN: 1878-5891
CID: 5261982

Low coherence interferometry approach for aiding fine needle aspiration biopsies

Chang, Ernest W; Gardecki, Joseph; Pitman, Martha; Wilsterman, Eric J; Patel, Ankit; Tearney, Guillermo J; Iftimia, Nicusor
We present portable preclinical low-coherence interference (LCI) instrumentation for aiding fine needle aspiration biopsies featuring the second-generation LCI-based biopsy probe and an improved scoring algorithm for tissue differentiation. Our instrument and algorithm were tested on 38 mice with cultured tumor mass and we show the specificity, sensitivity, and positive predictive value of tumor detection of over 0.89, 0.88, and 0.96, respectively.
PMID: 25375634
ISSN: 1560-2281
CID: 5262032

Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

Ekberg, Peter; Su, Rong; Chang, Ernest W; Yun, Seok Hyun; Mattsson, Lars
Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 μm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness.
PMID: 24562018
ISSN: 1520-8532
CID: 5261992

Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study

Savastru, Dan; Chang, Ernest W; Miclos, Sorin; Pitman, Martha B; Patel, Ankit; Iftimia, Nicusor
This study aimed to evaluate the concept of using high-resolution optical coherence tomography (OCT) imaging to rapidly assess surgical specimens and determine if cancer positive margins were left behind in the surgical bed. A mouse model of breast cancer was used in this study. Surgical specimens from 30 animals were investigated with OCT and automated interpretation of the OCT images was performed and tested against histopathology findings. Specimens from 10 animals were used to build a training set of OCT images, while the remaining 20 specimens were used for a validation set of images. The validation study showed that automated interpretation of OCT images can differentiate tissue types and detect cancer positive margins with at least 81% sensitivity and 89% specificity. The findings of this pilot study suggest that OCT imaging of surgical specimens and automated interpretation of OCT data may enable in the future real-time feedback to the surgeon about margin status in patients with breast cancer, and potentially with other types of cancers. Currently, such feedback is not provided and if positive margins are left behind, patients have to undergo another surgical procedure. Therefore, this approach can have a potentially high impact on breast surgery outcome.
PMID: 24788370
ISSN: 1560-2281
CID: 5262002

Deep Learning-Derived Myocardial Strain

Kwan, Alan C; Chang, Ernest W; Jain, Ishan; Theurer, John; Tang, Xiu; Francisco, Nadia; Haddad, Francois; Liang, David; Fábián, Alexandra; Ferencz, Andrea; Yuan, Neal; Merkely, Béla; Siegel, Robert; Cheng, Susan; Kovács, Attila; Tokodi, Márton; Ouyang, David
BACKGROUND:Echocardiographic strain measurements require extensive operator experience and have significant intervendor variability. Creating an automated, open-source, vendor-agnostic method to retrospectively measure global longitudinal strain (GLS) from standard echocardiography B-mode images would greatly improve post hoc research applications and may streamline patient analyses. OBJECTIVES/OBJECTIVE:This study was seeking to develop an automated deep learning strain (DLS) analysis pipeline and validate its performance across multiple applications and populations. METHODS:Interobserver/-vendor variation of traditional GLS, and simulated effects of variation in contour on speckle-tracking measurements were assessed. The DLS pipeline was designed to take semantic segmentation results from EchoNet-Dynamic and derive longitudinal strain by calculating change in the length of the left ventricular endocardial contour. DLS was evaluated for agreement with GLS on a large external dataset and applied across a range of conditions that result in cardiac hypertrophy. RESULTS:In patients scanned by 2 sonographers using 2 vendors, GLS had an intraclass correlation of 0.29 (95% CI: -0.01 to 0.53, P = 0.03) between vendor measurements and 0.63 (95% CI: 0.48-0.74, P < 0.001) between sonographers. With minor changes in initial input contour, step-wise pixel shifts resulted in a mean absolute error of 3.48% and proportional strain difference of 13.52% by a 6-pixel shift. In external validation, DLS maintained moderate agreement with 2-dimensional GLS (intraclass correlation coefficient [ICC]: 0.56, P = 0.002) with a bias of -3.31% (limits of agreement: -11.65% to 5.02%). The DLS method showed differences (P < 0.0001) between populations with cardiac hypertrophy and had moderate agreement in a patient population of advanced cardiac amyloidosis: ICC was 0.64 (95% CI: 0.53-0.72), P < 0.001, with a bias of 0.57%, limits of agreement of -4.87% to 6.01% vs 2-dimensional GLS. CONCLUSIONS:The open-source DLS provides lower variation than human measurements and similar quantitative results. The method is rapid, consistent, vendor-agnostic, publicly released, and applicable across a wide range of imaging qualities.
PMID: 38551533
ISSN: 1876-7591
CID: 5645262

An Anterior Second Heart Field Enhancer Regulates the Gene Regulatory Network of the Cardiac Outflow Tract

Yamaguchi, Naoko; Chang, Ernest W; Lin, Ziyan; Shekhar, Akshay; Bu, Lei; Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis; Cen, Yiyun; Phoon, Colin K L; Moskowitz, Ivan P; Park, David S
BACKGROUND/UNASSIGNED:Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS/UNASSIGNED: RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.
PMID: 37772400
ISSN: 1524-4539
CID: 5606412