Try a new search

Format these results:

Searched for:



Total Results:


Endothelial PHACTR1 Promotes Endothelial Activation and Atherosclerosis by Repressing PPARγ Activity Under Disturbed Flow in Mice

Jiang, Dongyang; Liu, Hao; Zhu, Guofu; Li, Xiankai; Fan, Linlin; Zhao, Faxue; Xu, Chong; Wang, Shumin; Rose, Yara; Rhen, Jordan; Yu, Ze; Yin, Yiheng; Gu, Yuling; Xu, Xiangbin; Fisher, Edward A; Ge, Junbo; Xu, Yawei; Pang, Jinjiang
BACKGROUND:(phosphatase and actin regulator 1) locus strongly correlate with coronary artery disease. However, the biological function of PHACTR1 remains poorly understood. Here, we identified the proatherosclerotic effect of endothelial PHACTR1, contrary to macrophage PHACTR1. METHODS: RESULTS:KO on EC activation and atherosclerosis in vivo. CONCLUSIONS:Our results identified endothelial PHACTR1 as a novel PPARγ corepressor to promote atherosclerosis in disturbed flow regions. Endothelial PHACTR1 is a potential therapeutic target for atherosclerosis treatment.
PMID: 37199156
ISSN: 1524-4636
CID: 5508052

Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice

Yu, Liming; Xu, Lin; Chu, Haiyan; Peng, Jun; Sacharidou, Anastasia; Hsieh, Hsi-Hsien; Weinstock, Ada; Khan, Sohaib; Ma, Liqian; Durán, José Gabriel Barcia; McDonald, Jeffrey; Nelson, Erik R; Park, Sunghee; McDonnell, Donald P; Moore, Kathryn J; Huang, Lily Jun-Shen; Fisher, Edward A; Mineo, Chieko; Huang, Linzhang; Shaul, Philip W
Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.
PMID: 37491347
ISSN: 2041-1723
CID: 5559442

β-carotene accelerates resolution of atherosclerosis by promoting regulatory T cell expansion in the atherosclerotic lesion

Pinos, Ivan; Coronel, Johana; Albakri, Asma"™A; Blanco, Amparo; McQueen, Patrick; Molina, Donald; Sim, Jaeyoung; Fisher, Edward A.; Amengual, Jaume
β-carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
ISSN: 2050-084x
CID: 5548742

DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice

Senatus, Laura; Egaña-Gorroño, Lander; López-Díez, Raquel; Bergaya, Sonia; Aranda, Juan Francisco; Amengual, Jaume; Arivazhagan, Lakshmi; Manigrasso, Michaele B; Yepuri, Gautham; Nimma, Ramesh; Mangar, Kaamashri N; Bernadin, Rollanda; Zhou, Boyan; Gugger, Paul F; Li, Huilin; Friedman, Richard A; Theise, Neil D; Shekhtman, Alexander; Fisher, Edward A; Ramasamy, Ravichandran; Schmidt, Ann Marie
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
PMID: 36932214
ISSN: 2399-3642
CID: 5449062

Bariatric surgery normalizes diabetes risk index by one month post-operation

Sinatra, Vincent J; Lin, BingXue; Parikh, Manish; Berger, Jeffrey S; Fisher, Edward A; Heffron, Sean P
AIM/OBJECTIVE:The Diabetes risk index (DRI) is a composite of NMR-measured lipoproteins and branched chain amino acids predictive of diabetes mellitus development. Bariatric surgery is indicated in patients with severe obesity, many of whom are at high-risk for developing diabetes. Substantial weight loss occurs following bariatric surgery and sustained weight loss likely contributes to reductions in the development of diabetes and cardiovascular disease. However, some evidence suggests that bariatric surgical procedures themselves may contribute to reducing risk of these conditions independent of weight loss. We aimed to investigate DRI and its association with reductions in body weight and adiposity over one year following bariatric surgery. METHODS:; n = 15). RESULTS:, but DRI decreased so that it no longer differed from that of normal BMI controls (1.9 [1, 17] vs control 12 [1, 20]; p = 0.35). Subjects continued to lose weight, whereas DRI remained similar, throughout follow-up with DRI 1.0 [1, 7] at 12 months. Changes in DRI did not correlate with changes in BMI, body weight or waist circumference at any time during follow-up. There was no difference in change in DRI between surgical procedures or pre-operative metabolic syndrome status. CONCLUSIONS:Our analysis of DRI scores supports the capacity of bariatric surgery to reduce risk of developing diabetes in severely obese individuals. Our findings suggest that bariatric surgical techniques may have inherent effects that improve cardiometabolic risk independent of reductions in body weight or adiposity.
PMID: 36350383
ISSN: 1432-5233
CID: 5357342

Editorial: Metabolic hormones and inflammation

Gage, Matthew C.; Alzaid, Fawaz; McNeilly, Alison Delamere; Fisher, Edward A.
ISSN: 2297-055x
CID: 5407902

Galectin-9: A novel promoter of atherosclerosis progression

Krautter, Franziska; Hussain, Mohammed T; Zhi, Zhaogong; Lezama, Danielle R; Manning, Julia E; Brown, Emily; Marigliano, Noemi; Raucci, Federica; Recio, Carlota; Chimen, Myriam; Maione, Francesco; Tiwari, Alok; McGettrick, Helen M; Cooper, Dianne; Fisher, Edward A; Iqbal, Asif J
BACKGROUND AND AIMS/OBJECTIVE:Atherosclerosis is widely accepted to be an inflammatory disease driven by lipid accumulation and leukocyte recruitment. More recently, galectins, a family of β-galactoside binding proteins, have been shown to play a role in leukocyte recruitment among other immunomodulatory functions. Galectin (Gal) -9, a tandem repeat type galectin expressed by the endothelium in inflammatory environments, has been proposed to promote leukocyte recruitment. However, the role of Gal-9 in the context of monocyte recruitment remains elusive. METHODS AND RESULTS/RESULTS:monocytes in a β2-integrin and glycan dependent manner, while adhesion of monocytes to stimulated endothelium is reduced when Gal-9 is knocked down. Gal-9 also facilitates enhanced recruitment of leukocytes from peripheral arterial disease (PAD) patients compared to healthy young and aged controls. We further characterise the endothelium as source of circulating Gal-9, which is increased in plasma of PAD patients compared to healthy controls. CONCLUSIONS:These results highlight a pathological role for Gal-9 as promoter of monocyte recruitment and atherosclerotic plaque progression, making it a novel target in the prevention of plaque formation and progression.
PMID: 36459823
ISSN: 1879-1484
CID: 5374182

Big Fish or No Fish; Eicosapentaenoic Acid and Cardiovascular Disease

Goldberg, Ira J; Gjini, Jana; Fisher, Edward A
Benefits of omega 3 fatty acids for cardiovascular and other diseases have been touted for more than 50 years. The one clear clinical benefit of these lipids is the reduction of circulating levels of triglycerides, making them a useful approach for the prevention of pancreatitis in severely hypertriglyceridemic patients. After a series of spectacularly failed clinical trials that were criticized for the choice of subjects and doses of omega 3 fatty acids used, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using a high dose of icosapent ethyl (IPE) reported a reduction in cardiovascular disease (CVD) events. However, this trial has generated controversy due to the use of mineral oil in the control group and the associated side effects of the IPA. This review will focus on the following topics: What are the epidemiologic data suggesting a benefit of omega 3 fatty acids? What might be the mechanisms for these benefits? Why have the clinical trials failed to resolve whether these fatty acids provide benefit? What choices should a clinician consider?
PMID: 35963632
ISSN: 1558-4410
CID: 5287452

Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils

Zwack, Erin E; Chen, Ze; Devlin, Joseph C; Li, Zhi; Zheng, Xuhui; Weinstock, Ada; Lacey, Keenan A; Fisher, Edward A; Fenyö, David; Ruggles, Kelly V; Loke, P'ng; Torres, Victor J
PMID: 35881802
ISSN: 1091-6490
CID: 5276372

Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice

Vurusaner, Beyza; Thevkar-Nages, Prashanth; Kaur, Ravneet; Giannarelli, Chiara; Garabedian, Michael J; Fisher, Edward A
The regression, or resolution, of inflammation in atherosclerotic plaques is impaired in diabetes. However, the factors mediating this effect remain incomplete. We identified protein arginine methyltransferase 2 (PRMT2) as a protein whose expression in macrophages is reduced in hyperglycemia and diabetes. PRMT2 catalyzes arginine methylation to target proteins to modulate gene expression. Because PRMT2 expression is reduced in cells in hyperglycemia, we wanted to determine whether PRMT2 plays a causal role in the impairment of atherosclerosis regression in diabetes. We, therefore, examined the consequence of deleting PRMT2 in myeloid cells during the regression of atherosclerosis in normal and diabetic mice. Remarkably, we found significant impairment of atherosclerosis regression under normoglycemic conditions in mice lacking PRMT2 (Prmt2-/-) in myeloid cells that mimic the decrease in regression of atherosclerosis in WT mice under diabetic conditions. This was associated with increased plaque macrophage retention, as well as increased apoptosis and necrosis. PRMT2-deficient plaque CD68+ cells under normoglycemic conditions showed increased expression of genes involved in cytokine signaling and inflammation compared to WT cells. Consistently, Prmt2-/- bone marrow-derived macrophages (BMDMs) showed an increased response of proinflammatory genes to LPS and a decreased response of inflammation resolving genes to IL-4. This increased response to LPS in Prmt2-/- BMDMs occurs via enhanced NF-kappa B activity. Thus, the loss of PRMT2 is causally linked to impaired atherosclerosis regression via a heightened inflammatory response in macrophages. That PRMT2 expression was lower in myeloid cells in plaques from human subjects with diabetes supports the relevance of our findings to human atherosclerosis.
PMID: 35835907
ISSN: 2045-2322
CID: 5278482