Try a new search

Format these results:

Searched for:

person:kleinc01

in-biosketch:yes

Total Results:

87


A Historical Overview of Cell-Based Assays for Detecting Epigenetic Effects [Meeting Abstract]

Klein, C.
ISI:000307896300116
ISSN: 0893-6692
CID: 177763

Genetic and epigenetic effects of environmental arsenicals

Rossman, Toby G; Klein, Catherine B
Environmental arsenic compounds and their methylated metabolites do not form adducts with DNA, but do cause oxidative DNA damage. Chromosome aberrations are seen at toxic concentrations. Genetic effects that occur at non-toxic concentrations include aneuploidy, comutagenesis (resulting from indirect effects on DNA repair), and delayed mutagenesis (probably secondary to aneuploidy and/or epigenetic effects). Effects of trivalent arsenicals on poly(ADP ribose) polymerase and P53 activation may mediate effects on DNA repair and aneuploidy. A growing literature points to the epigenetic effects of arsenic compounds in cells and in vivo. A review of the current literature on DNA methylation, histone modifications and microRNA effects is presented
PMID: 21976018
ISSN: 1756-591x
CID: 140528

Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer

Wu, Jing; Omene, Coral; Karkoszka, Jerzy; Bosland, Maarten; Eckard, Jonathan; Klein, Catherine B; Frenkel, Krystyna
Breast cancer (BC) patients use alternative and natural remedies more than patients with other malignancies. Specifically, 63-83% use at least one type of alternative medicine and 25-63% use herbals and vitamins. Propolis is a naturopathic honeybee product, and CAPE (caffeic acid phenethyl ester), is a major medicinal component of propolis. CAPE, in a concentration dependent fashion, inhibits MCF-7 (hormone receptor positive, HR+) and MDA-231 (a model of triple negative BC (TNBC) tumor growth, both in vitro and in vivo without much effect on normal mammary cells and strongly influences gene and protein expression. It induces cell cycle arrest, apoptosis and reduces expression of growth and transcription factors, including NF-kappaB. Notably, CAPE down-regulates mdr-1 gene, considered responsible for the resistance of cancer cells to chemotherapeutic agents. Further, CAPE dose-dependently suppresses VEGF formation by MDA-231 cells and formation of capillary-like tubes by endothelial cells, implicating inhibitory effects on angiogenesis. In conclusion, our results strongly suggest that CAPE inhibits MDA-231 and MCF-7 human breast cancer growth via its apoptotic effects, and modulation of NF-kappaB, the cell cycle, and angiogenesis
PMCID:3144783
PMID: 21570765
ISSN: 1872-7980
CID: 134448

DNA methylation in pre-diagnostic serum samples of breast cancer cases: Results of a nested case-control study

Brooks, Jennifer D; Cairns, Paul; Shore, Roy E; Klein, Catherine B; Wirgin, Isaac; Afanasyeva, Yelena; Zeleniuch-Jacquotte, Anne
Background: Promoter methylation of tumor suppressor genes is a frequent and early event in breast carcinogenesis. Paired tumor tissue and serum samples from women with breast cancer show that promoter methylation is detectable in both sample types, with good concordance. This suggests the potential for these serum markers to be used for breast cancer detection. Methods: The current study was a case-control study nested within the prospective New York University Women's Health Study cohort aimed to assess the ability of promoter methylation in serum to detect pre-clinical disease. Cases were women with blood samples collected within the 6 months preceding breast cancer diagnosis (n=50). Each case was matched to 2 healthy cancer-free controls and 1 cancer-free control with a history of benign breast disease (BBD). Results: Promoter methylation analysis of four cancer-related genes: -RASSF1A, GSTP1, APC and RARbeta2, - was conducted using quantitative methylation-specific PCR. Results showed that the frequency of methylation was lower than expected among cases and higher than expected among controls. Methylation was detected in the promoter region of: RASSF1A in 22.0%, 22.9% and 17.2% of cases, BBD controls and healthy controls respectively; GSTP1 in 4%, 10.4% and 7.1% respectively; APC in 2.0%, 4.4% and 4.2% respectively and RARbeta2 in 6.7%, 2.3% and 1.1% respectively. Conclusion: Methylation status of the four genes included in this study was unable to distinguish between cases and either control group. This study highlights some methodological issues to be addressed in planning prospective studies to evaluate methylation markers as diagnostic biomarkers
PMCID:2956002
PMID: 20627767
ISSN: 1877-783x
CID: 114817

A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae

Arita, Adriana; Zhou, Xue; Ellen, Thomas P; Liu, Xin; Bai, Jingxiang; Rooney, John P; Kurtz, Adrienne; Klein, Catherine B; Dai, Wei; Begley, Thomas J; Costa, Max
BACKGROUND: The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism) to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO(4)). RESULTS: We have identified 149 genes whose gene deletion causes sensitivity to NiSO(4) and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO(4). Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO(4) include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. CONCLUSION: We have undertaken a whole genome approach in order to further understand the mechanism(s) regulating the cell's toxicity to nickel compounds. We have used computational methods to integrate the data and generate global models of the yeast's cellular response to NiSO(4). The results of our study shed light on molecular pathways associated with the cellular response of eukaryotic cells to nickel compounds and provide potential implications for further understanding the toxic effects of nickel compounds to human cells
PMCID:2784802
PMID: 19917080
ISSN: 1471-2164
CID: 105506

A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity

Zhou, Xue; Arita, Adriana; Ellen, Thomas P; Liu, Xin; Bai, Jingxiang; Rooney, John P; Kurtz, Adrienne D; Klein, Catherine B; Dai, Wei; Begley, Thomas J; Costa, Max
We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4733 haploid S. cerevisiae single-gene-deletion mutants to identify those that have decreased or increased growth, relative to wild type, after exposure to sodium arsenite (NaAsO(2)). IC(50) values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite-toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging
PMCID:2763962
PMID: 19631266
ISSN: 1089-8646
CID: 104719

Persistence of Epigenetic Changes Induced by Chronic Submicromolar Arsenic [Meeting Abstract]

Klein, CB; Mauro, M
ISI:000269046400069
ISSN: 0893-6692
CID: 101939

Long-term exposure to submicromolar arsenite induces chromosome instability via bypass of the spindle assembly checkpoint in mammalian cells [Meeting Abstract]

Mauro, M; Leszczynska, J; Barbata, G; Caradonna, F; Sciandrello, G; Rossman, TG; Klein, CB
ISI:000258725800125
ISSN: 0893-6692
CID: 86808

Modulation of gene methylation by genistein or lycopene in breast cancer cells

King-Batoon, Audrey; Leszczynska, Joanna M; Klein, Catherine B
Dietary agents with chemopreventive potential, including soy-derived genistein and tomato-derived lycopene, have been shown to alter gene expression in ways that can either promote or potentially inhibit the carcinogenic processes. To begin to explore the mechanisms by which these agents may be acting we have examined the DNA methylation modulating capacity of genistein or lycopene for several genes relevant to breast cancer in the breast cancer cell lines MCF-7 and MDA-MB-468, as well as in immortalized but noncancer fibrocystic MCF10A breast cells. We find using methylation specific PCR (MSP) that a low, nontoxic concentration of genistein (3.125 microM, resupplemented every 48 hr for 1 week) or a single dose of lycopene (2 microM) partially demethylates the promoter of the GSTP1 tumor suppressor gene in MDA-MB-468 cells. RT-PCR studies confirm a lack of GSTP1 expression in untreated MDA-MB-468, with restoration of GSTP1 expression after genistein or lycopene treatment. The RARbeta2 gene however, was not demethylated by genistein or lycopene in either of these breast cancer cell lines. But, lycopene (2 microM, once per week for 2 weeks) did induce demethylation of RARbeta2 and the HIN-1 genes in the noncancer MCF10A fibrocystic breast cells. These data show for the first time that the tomato carotenoid lycopene has direct DNA demethylating activity. In summary, both genistein and lycopene, at very low, dietarily relevant concentrations can potentially mitigate tumorigenic processes via promoter methylation modulation of gene expression
PMID: 18181168
ISSN: 0893-6692
CID: 76766

Further evidence against a direct genotoxic mode of action for arsenic-induced cancer

Klein, Catherine B; Leszczynska, Joanna; Hickey, Christina; Rossman, Toby G
Arsenic in drinking water, a mixture of arsenite and arsenate, is associated with increased skin and other cancers in Asia and Latin America, but not the United States. Arsenite alone in drinking water does not cause skin cancers in experimental animals; therefore, it is not a complete carcinogen in skin. We recently showed that low concentrations of arsenite enhanced the tumorigenicity of solar UV irradiation in hairless mice, suggesting arsenic cocarcinogenesis with sunlight in skin cancer and perhaps with different carcinogenic partners for lung and bladder tumors. Cocarcinogenic mechanisms could include blocking DNA repair, stimulating angiogenesis, altering DNA methylation patterns, dysregulating cell cycle control, induction of aneuploidy and blocking apoptosis. Arsenicals are documented clastogens but not strong mutagens, with weak mutagenic activity reported at highly toxic concentrations of inorganic arsenic. Previously, we showed that arsenite, but not monomethylarsonous acid (MMA[III]), induced delayed mutagenesis in HOS cells. Here, we report new data on the mutagenicity of the trivalent methylated arsenic metabolites MMA(III) and dimethylarsinous acid [DMA(III)] at the gpt locus in Chinese hamster G12 cells. Both methylated arsenicals seemed mutagenic with apparent sublinear dose responses. However, significant mutagenesis occurred only at highly toxic concentrations of MMA(III). Most mutants induced by MMA(III) and DMA(III) exhibited transgene deletions. Some non-deletion mutants exhibited altered DNA methylation. A critical discussion of cell survival leads us to conclude that clastogenesis occurs primarily at highly cytotoxic arsenic concentrations, casting further doubt as to whether a genotoxic mode of action (MOA) for arsenicals is supportable
PMCID:1986829
PMID: 17316729
ISSN: 0041-008x
CID: 72150