Try a new search

Format these results:

Searched for:



Total Results:


Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions

Gyftopoulos, Soterios; Lin, Dana; Knoll, Florian; Doshi, Ankur M; Rodrigues, Tatiane Cantarelli; Recht, Michael P
OBJECTIVE. The objective of this article is to show how artificial intelligence (AI) has impacted different components of the imaging value chain thus far as well as to describe its potential future uses. CONCLUSION. The use of AI has the potential to greatly enhance every component of the imaging value chain. From assessing the appropriateness of imaging orders to helping predict patients at risk for fracture, AI can increase the value that musculoskeletal imagers provide to their patients and to referring clinicians by improving image quality, patient centricity, imaging efficiency, and diagnostic accuracy.
PMID: 31166761
ISSN: 1546-3141
CID: 3917862

Machine learning for image reconstruction

Chapter by: Hammernik, Kerstin; Knoll, Florian
in: Handbook of Medical Image Computing and Computer Assisted Intervention by
[S.l.] : Elsevier, 2019
pp. 25-64
ISBN: 9780128161760
CID: 4534212

Assessment of the generalization of learned image reconstruction and the potential for transfer learning

Knoll, Florian; Hammernik, Kerstin; Kobler, Erich; Pock, Thomas; Recht, Michael P; Sodickson, Daniel K
PURPOSE/OBJECTIVE:Although deep learning has shown great promise for MR image reconstruction, an open question regarding the success of this approach is the robustness in the case of deviations between training and test data. The goal of this study is to assess the influence of image contrast, SNR, and image content on the generalization of learned image reconstruction, and to demonstrate the potential for transfer learning. METHODS:Reconstructions were trained from undersampled data using data sets with varying SNR, sampling pattern, image contrast, and synthetic data generated from a public image database. The performance of the trained reconstructions was evaluated on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that were not used during training. Transfer learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of in vivo MR training data. RESULTS:Deviations in SNR between training and testing led to substantial decreases in reconstruction image quality, whereas image contrast was less relevant. Trainings from heterogeneous training data generalized well toward the test data with a range of acquisition parameters. Trainings from synthetic, non-MR image data showed residual aliasing artifacts, which could be removed by transfer learning-inspired fine-tuning. CONCLUSION/CONCLUSIONS:This study presents insights into the generalization ability of learned image reconstruction with respect to deviations in the acquisition settings between training and testing. It also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular target application using only a small number of training cases.
PMID: 29774597
ISSN: 1522-2594
CID: 3121542

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI [PrePrint]

Zbontar, Jure; Knoll, Florian; Sriram, Anuroop; Murrell, Tullie; Huang, Zhengnan; Muckley, Matthew J; Defazio, Aaron; Stern, Ruben; Johnson, Patricia; Bruno, Mary; Parente, Marc; Geras, Krzysztof J; Katsnelson, Joe; Chandarana, Hersh; Zhang, Zizhao; Drozdzal, Michal; Romero, Adirana; Rabbat, Michael; Vincent, Pascal; Yakubova, Nafissa; Pinkerton, James; Wang, Duo; Owens, Erich; Zitnick, C Lawrence; Recht, Michael P; Sodickson, Daniel K; Lui, Yvonne W
Accelerating Magnetic Resonance Imaging (MRI) by taking fewer measurements has the potential to reduce medical costs, minimize stress to patients and make MRI possible in applications where it is currently prohibitively slow or expensive. We introduce the fastMRI dataset, a large-scale collection of both raw MR measurements and clinical MR images, that can be used for training and evaluation of machine-learning approaches to MR image reconstruction. By introducing standardized evaluation criteria and a freely-accessible dataset, our goal is to help the community make rapid advances in the state of the art for MR image reconstruction. We also provide a self-contained introduction to MRI for machine learning researchers with no medical imaging background
ISSN: 2331-8422
CID: 4534312

Inverse GANs for Accelerated MRI Reconstruction [Meeting Abstract]

Narnhofer, Dominik; Hammernik, Kerstin; Knoll, Florian; Pock, Thomas
ISSN: 0277-786x
CID: 4533962

Deep learning methods for parallel magnetic resonance image reconstruction [PrePrint]

Knoll, Florian; Hammernik, Kerstin; Zhang, Chi; Moeller, Steen; Pock, Thomas; Sodickson, Daniel K; Akcakaya, Mehmet
Following the success of deep learning in a wide range of applications, neural network-based machine learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and image processing have been successfully applied to non-linear image reconstruction in the spirit of compressed sensing for both low dose computed tomography and accelerated MRI. The additional integration of multi-coil information to recover missing k-space lines in the MRI reconstruction process, is still studied less frequently, even though it is the de-facto standard for currently used accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given that is structured around the classical view of image space and k-space based methods. Both linear and non-linear methods are covered, followed by a discussion of recent efforts to further improve parallel imaging using machine learning, and specifically using artificial neural networks. Image-domain based techniques that introduce improved regularizers are covered as well as k-space based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed as well as recent efforts for producing open datasets and benchmarks for the community.
ISSN: 2331-8422
CID: 4534322

Training a Neural Network for Gibbs and Noise Removal in Diffusion MRI [PrePrint]

Muckley, Matthew J; Ades-Aron, Benjamin; Papaioannou, Antonios; Lemberskiy, Gregory; Solomon, Eddy; Lui, Yvonne W; Sodickson, Daniel K; Fieremans, Els; Novikov, Dmitry S; Knoll, Florian
We develop and evaluate a neural network-based method for Gibbs artifact and noise removal. A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnitude images and one for complex images. Both models were based on the same encoder-decoder structure and were trained by simulating MRI acquisitions on synthetic non-MRI images. Both machine learning methods were able to mitigate artifacts in diffusion-weighted images and diffusion parameter maps. The CNN for complex images was also able to reduce artifacts in partial Fourier acquisitions. The proposed CNNs extend the ability of artifact correction in diffusion MRI. The machine learning method described here can be applied on each imaging slice independently, allowing it to be used flexibly in clinical applications
ISSN: 2331-8422
CID: 4534342

Machine learning for medical image reconstruction : second international workshop, MLMIR 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019 : proceedings

Knoll, Florian
Cham : Springer [2019]
Extent: ix, 266 p.
ISBN: 3030338428
CID: 4535222

Large-scale classification of breast MRI exams using deep convolutional networks [Meeting Abstract]

Gong, Shizhan; Muckley, Matthew; Wu, Nan; Makino, Taro; Kim, S. Gene; Heacock, Laura; Moy, Linda; Knoll, Florian; Geras, Krzysztof J
ISSN: 1049-5258
CID: 4668952

Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions [Meeting Abstract]

Johnson, Patricia M.; Muckley, Matthew J.; Bruno, Mary; Kobler, Erich; Hammernik, Kerstin; Pock, Thomas; Knoll, Florian
ISSN: 0302-9743
CID: 4688672