Try a new search

Format these results:

Searched for:

person:liua05

in-biosketch:true

Total Results:

52


Hippocampal Gamma Predicts Associative Memory Performance as Measured by Acute and Chronic Intracranial EEG [Meeting Abstract]

Henin, Simon; Shankar, Anita; Hasulak, Nicholas; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Flinker, Adeen; Sarac, Cansu; Fang, May; Doyle, Werner; Tcheng, Thomas; Devinsky, Orrin; Davachi, Lila; Liu, Anli
ISI:000446520900467
ISSN: 0364-5134
CID: 3726232

Hippocampal signature of associative memory measured by chronic ambulatory intracranial EEG [Meeting Abstract]

Liu, A
Some patients with medically refractory focal epilepsy are chronically implanted with a brain-responsive neurostimulation device (the RNS System), permitting neurophysiological mea-surements at millisecond resolution. This clinical device can be adapted to measure hippocampal dynamics time-locked to cognitive tasks. We illustrate the technique with a proof of concept in three patients previously implanted with the RNS System as they engage in an associative memory task, measured months apart. Hippocampal activity measured in successful encoding in RNS System patients mirrors that in surgical patients during intracranial electroencephalography (iEEG), suggesting that chronic iEEG allows sensitive measurements of hippocampal physiology over prolonged timescales
EMBASE:624732931
ISSN: 1531-8249
CID: 3429392

Author Correction: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings [Correction]

Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsaki, Gyorgy; Devinsky, Orrin; Parra, Lucas C; Liu, Anli
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm2), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm2), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.
PMCID:5830401
PMID: 29491347
ISSN: 2041-1723
CID: 2965562

Correction: Measurements and models of electric fields in thein vivohuman brain during transcranial electric stimulation [Correction]

Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C
PMCID:5814148
PMID: 29446753
ISSN: 2050-084x
CID: 2990352

Frontal lobe seizures, frontal cortex, and dissociative states

Chapter by: Liu, Anli; Devinsky, Orrin
in: The human frontal lobes: Functions and disorders by Miller, Bruce L [Ed]; Cummings, Jeffrey L [Ed]
New York, NY, US: Guilford Press, 2018
pp. 515-529
ISBN: 978-1-4625-3183-7
CID: 2961212

Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings

Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsaki, Gyorgy; Devinsky, Orrin; Parra, Lucas C; A Liu, Anli
Transcranial electrical stimulation has widespread clinical and research applications, yet its effect on ongoing neural activity in humans is not well established. Previous reports argue that transcranial alternating current stimulation (tACS) can entrain and enhance neural rhythms related to memory, but the evidence from non-invasive recordings has remained inconclusive. Here, we measure endogenous spindle and theta activity intracranially in humans during low-frequency tACS and find no stable entrainment of spindle power during non-REM sleep, nor of theta power during resting wakefulness. As positive controls, we find robust entrainment of spindle activity to endogenous slow-wave activity in 66% of electrodes as well as entrainment to rhythmic noise-burst acoustic stimulation in 14% of electrodes. We conclude that low-frequency tACS at common stimulation intensities neither acutely modulates spindle activity during sleep nor theta activity during waking rest, likely because of the attenuated electrical fields reaching the cortical surface.
PMCID:5662600
PMID: 29084960
ISSN: 2041-1723
CID: 2765082

Application of RNS in refractory epilepsy: Targeting insula

Chen, Hai; Dugan, Patricia; Chong, Derek J; Liu, Anli; Doyle, Werner; Friedman, Daniel
Although responsive neurostimulation (RNS) is approved for treatment of resistant focal epilepsy in adults, little is known about response to treatment of specific cortical targets. We describe the experience of RNS targeting the insular lobe. We identified patients who had RNS implantation with at least one electrode within the insula between April 2014 and October 2015. We performed a retrospective review of preoperative clinical features, imaging, electrocardiogram (EEG), intraoperative electrocorticography (ECoG), and postoperative seizure outcome. Eight patients with at least 6 months of postimplant follow-up were identified. Ictal localization was inconclusive with MRI or scalp EEG findings. Intracranial EEG monitoring or intraoperative ECoG demonstrated clear ictal onsets and/or frequent interictal discharges in the insula. Four patients demonstrated overall 50-75% reduction in seizure frequency. Two patients did not show appreciable seizure improvement. One patient has experienced a 75% reduction of seizure frequency, and another is nearly seizure free postoperatively. There were no reported direct complications of insular RNS electrode placement or stimulation, though two patients had postoperative complications thought to be related to craniotomy (hydrocephalus and late infection). Our study suggests that insular RNS electrode placement in selected patients is relatively safe and that RNS treatment may benefit selected patients with insular epilepsy.
PMCID:5862125
PMID: 29588964
ISSN: 2470-9239
CID: 3040762

Response to letter to the editor: Safety of transcranial direct current stimulation: Evidence based update 2016 [Letter]

Bikson, Marom; Grossman, Pnina; Zannou, Adantchede Louis; Kronberg, Greg; Truong, Dennis; Boggio, Paulo; Brunoni, Andre R; Charvet, Leigh; Fregni, Felipe; Fritsch, Brita; Gillick, Bernadette; Hamilton, Roy H; Hampstead, Benjamin M; Kirton, Adam; Knotkova, Helena; Liebetanz, David; Liu, Anli; Loo, Colleen; Nitsche, Michael A; Reis, Janine; Richardson, Jessica D; Rotenberg, Alexander; Turkeltaub, Peter E; Woods, Adam J
PMCID:5975364
PMID: 28734680
ISSN: 1876-4754
CID: 2644722

Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation [Meeting Abstract]

Huang, Y; Liu, A; Lafon, B; Friedman, D; Dayan, M; Wang, X; Bikson, M; Devinsky, O; Parra, L C
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. Here we measure electric potentials intracranially in ten epilepsy patients and estimate electric fields across the entire brain by leveraging calibrated current- flow models. Electric field magnitudes at the cortical surface reach values of 0.4 V/m, which is at the lower limit of effectiveness in animal studies. When individual anatomy is taken into account, the predicted electric field magnitudes correlate with the recorded values (r=0.89 and r=0.84 in cortical and depth electrodes, respectively). Modeling white matter anisotropy and different skull compartments does not improve accuracy, but correct magnitude estimates require an adjustment of conductivity values used in the literature. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation for targeting of stimulation and interpretation of clinical trials
EMBASE:617344087
ISSN: 1876-4754
CID: 2645502

Parahippocampal and Entorhinal Resection Extent Predicts Verbal Memory Decline in an Epilepsy Surgery Cohort

Liu, Anli; Thesen, Thomas; Barr, William; Morrison, Chris; Dugan, Patricia; Wang, Xiuyuan; Meager, Michael; Doyle, Werner; Kuzniecky, Ruben; Devinsky, Orrin; Blackmon, Karen
The differential contribution of medial-temporal lobe regions to verbal declarative memory is debated within the neuroscience, neuropsychology, and cognitive psychology communities. We evaluate whether the extent of surgical resection within medial-temporal regions predicts longitudinal verbal learning and memory outcomes. This single-center retrospective observational study involved patients with refractory temporal lobe epilepsy undergoing unilateral anterior temporal lobe resection from 2007 to 2015. Thirty-two participants with Engel Classes 1 and 2 outcomes were included (14 left, 18 right) and followed for a mean of 2.3 years after surgery (+/-1.5 years). Participants had baseline and postsurgical neuropsychological testing and high-resolution T1-weighted MRI scans. Postsurgical lesions were manually traced and coregistered to presurgical scans to precisely quantify resection extent of medial-temporal regions. Verbal learning and memory change scores were regressed on hippocampal, entorhinal, and parahippocampal resection volume after accounting for baseline performance. Overall, there were no significant differences in learning and memory change between patients who received left and right anterior temporal lobe resection. After controlling for baseline performance, the extent of left parahippocampal resection accounted for 27% (p = .021) of the variance in verbal short delay free recall. The extent of left entorhinal resection accounted for 37% (p = .004) of the variance in verbal short delay free recall. Our findings highlight the critical role that the left parahippocampal and entorhinal regions play in recall for verbal material.
PMID: 27991184
ISSN: 1530-8898
CID: 2465052