Try a new search

Format these results:

Searched for:

person:placad01

in-biosketch:true

Total Results:

157


T2-FLAIR mismatch sign predicts DNA methylation subclass and CDKN2A/B status in IDH-mutant astrocytomas

Lee, Matthew D; Jain, Rajan; Galbraith, Kristyn; Chen, Anna; Lieberman, Evan; Patel, Sohil H; Placantonakis, Dimitris G; Zagzag, David; Barbaro, Marissa; Guillermo Prieto Eibl, Maria Del Pilar; Golfinos, John G; Orringer, Daniel A; Snuderl, Matija
PURPOSE/OBJECTIVE:DNA methylation profiling stratifies isocitrate dehydrogenase (IDH)-mutant astrocytomas into methylation low-grade and high-grade groups. We investigated the utility of the T2-FLAIR mismatch sign for predicting DNA methylation grade and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion, a molecular biomarker for grade 4 IDH-mutant astrocytomas, according to the 2021 World Health Organization (WHO) classification. EXPERIMENTAL DESIGN/METHODS:Preoperative MRI scans of IDH-mutant astrocytomas subclassified by DNA methylation profiling (n=71) were independently evaluated by two radiologists for the T2-FLAIR mismatch sign. The diagnostic utility of T2-FLAIR mismatch in predicting methylation grade, CDKN2A/B status, copy number variation, and survival was analyzed. RESULTS:The T2-FLAIR mismatch sign was present in 21 of 45 (46.7%) methylation low-grade and 1 of 26 (3.9%) methylation high-grade cases (p<0.001), resulting in 96.2% specificity, 95.5% positive predictive value, and 51.0% negative predictive value for predicting low methylation grade. The T2-FLAIR mismatch sign was also significantly associated with intact CDKN2A/B status (p=0.028) with 87.5% specificity, 86.4% positive predictive value, and 42.9% negative predictive value. Overall multivariable Cox analysis showed that retained CDKN2A/B status remained significant for PFS (p=0.01). Multivariable Cox analysis of the histologic grade 3 subset, which was nearly evenly divided by CDKN2A/B status, CNV, and methylation grade, showed trends toward significance for DNA methylation grade with OS (p=0.045) and CDKN2A/B status with PFS (p=0.052). CONCLUSIONS:The T2-FLAIR mismatch sign is highly specific for low methylation grade and intact CDKN2A/B in IDH-mutant astrocytomas.
PMID: 38829583
ISSN: 1557-3265
CID: 5664982

Prognostic value of DNA methylation subclassification, aneuploidy, and CDKN2A/B homozygous deletion in predicting clinical outcome of IDH mutant astrocytomas

Galbraith, Kristyn; Garcia, Mekka; Wei, Siyu; Chen, Anna; Schroff, Chanel; Serrano, Jonathan; Pacione, Donato; Placantonakis, Dimitris G; William, Christopher M; Faustin, Arline; Zagzag, David; Barbaro, Marissa; Eibl, Maria Del Pilar Guillermo Prieto; Shirahata, Mitsuaki; Reuss, David; Tran, Quynh T; Alom, Zahangir; von Deimling, Andreas; Orr, Brent A; Sulman, Erik P; Golfinos, John G; Orringer, Daniel A; Jain, Rajan; Lieberman, Evan; Feng, Yang; Snuderl, Matija
BACKGROUND:Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS:We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS:There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS:The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.
PMCID:11145445
PMID: 38243818
ISSN: 1523-5866
CID: 5664582

Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1

Stephan, Gabriele; Haddock, Sara; Wang, Shuai; Erdjument-Bromage, Hediye; Liu, Wenke; Ravn-Boess, Niklas; Frenster, Joshua D.; Bready, Devin; Cai, Julia; Ronnen, Rebecca; Sabio-Ortiz, Jonathan; Fenyo, David; Neubert, Thomas A.; Placantonakis, Dimitris G.
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
SCOPUS:85192907862
ISSN: 2211-1247
CID: 5659612

Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1

Stephan, Gabriele; Haddock, Sara; Wang, Shuai; Erdjument-Bromage, Hediye; Liu, Wenke; Ravn-Boess, Niklas; Frenster, Joshua D; Bready, Devin; Cai, Julia; Ronnen, Rebecca; Sabio-Ortiz, Jonathan; Fenyo, David; Neubert, Thomas A; Placantonakis, Dimitris G
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
PMID: 38758649
ISSN: 2211-1247
CID: 5663132

Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting

Filipiak, Patryk; Sajitha, Thajunnisa A; Shepherd, Timothy M; Clarke, Kamri; Goldman, Hannah; Placantonakis, Dimitris G; Zhang, Jiangyang; Chan, Kevin C; Boada, Fernando E; Baete, Steven H
PURPOSE/OBJECTIVE:The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra- and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. METHODS: RESULTS:ODF-FP outperformed by over 100% all the tested methods in terms of the ratios between the contra- and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. CONCLUSION/CONCLUSIONS:In this challenging model system, ODF-Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.
PMID: 37927121
ISSN: 1522-2594
CID: 5612792

The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability

Ravn-Boess, Niklas; Roy, Nainita; Hattori, Takamitsu; Bready, Devin; Donaldson, Hayley; Lawson, Christopher; Lapierre, Cathryn; Korman, Aryeh; Rodrick, Tori; Liu, Enze; Frenster, Joshua D; Stephan, Gabriele; Wilcox, Jordan; Corrado, Alexis D; Cai, Julia; Ronnen, Rebecca; Wang, Shuai; Haddock, Sara; Sabio Ortiz, Jonathan; Mishkit, Orin; Khodadadi-Jamayran, Alireza; Tsirigos, Aris; Fenyö, David; Zagzag, David; Drube, Julia; Hoffmann, Carsten; Perna, Fabiana; Jones, Drew R; Possemato, Richard; Koide, Akiko; Koide, Shohei; Park, Christopher Y; Placantonakis, Dimitris G
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.
PMID: 37938973
ISSN: 2211-1247
CID: 5590372

Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury

Rauchman, Steven H; Pinkhasov, Aaron; Gulkarov, Shelly; Placantonakis, Dimitris G; De Leon, Joshua; Reiss, Allison B
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
PMCID:10650880
PMID: 37958226
ISSN: 2075-4418
CID: 5611112

Tractography passes the test: Results from the diffusion-simulated connectivity (disco) challenge

Girard, Gabriel; Rafael-Patiño, Jonathan; Truffet, Raphaël; Aydogan, Dogu Baran; Adluru, Nagesh; Nair, Veena A; Prabhakaran, Vivek; Bendlin, Barbara B; Alexander, Andrew L; Bosticardo, Sara; Gabusi, Ilaria; Ocampo-Pineda, Mario; Battocchio, Matteo; Piskorova, Zuzana; Bontempi, Pietro; Schiavi, Simona; Daducci, Alessandro; Stafiej, Aleksandra; Ciupek, Dominika; Bogusz, Fabian; Pieciak, Tomasz; Frigo, Matteo; Sedlar, Sara; Deslauriers-Gauthier, Samuel; Kojčić, Ivana; Zucchelli, Mauro; Laghrissi, Hiba; Ji, Yang; Deriche, Rachid; Schilling, Kurt G; Landman, Bennett A; Cacciola, Alberto; Basile, Gianpaolo Antonio; Bertino, Salvatore; Newlin, Nancy; Kanakaraj, Praitayini; Rheault, Francois; Filipiak, Patryk; Shepherd, Timothy M; Lin, Ying-Chia; Placantonakis, Dimitris G; Boada, Fernando E; Baete, Steven H; Hernández-Gutiérrez, Erick; Ramírez-Manzanares, Alonso; Coronado-Leija, Ricardo; Stack-Sánchez, Pablo; Concha, Luis; Descoteaux, Maxime; Mansour L, Sina; Seguin, Caio; Zalesky, Andrew; Marshall, Kenji; Canales-Rodríguez, Erick J; Wu, Ye; Ahmad, Sahar; Yap, Pew-Thian; Théberge, Antoine; Gagnon, Florence; Massi, Frédéric; Fischi-Gomez, Elda; Gardier, Rémy; Haro, Juan Luis Villarreal; Pizzolato, Marco; Caruyer, Emmanuel; Thiran, Jean-Philippe
Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.
PMID: 37330025
ISSN: 1095-9572
CID: 5609102

The National Football League and traumatic brain injury: blood-based evaluation at the game [Editorial]

Rauchman, Steven H; Placantonakis, Dimitris G; Reiss, Allison B
#brain #injury in the #football #player - we need better #diagnosis and #prevention. #view our #latest #publication in the #journal Concussion @futuresciencegp on @thegame #Blood test #biomarker #innovation #safety @NFL.
PMCID:10945610
PMID: 38855759
ISSN: 2056-3299
CID: 5668812

PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma

Frenster, Joshua D; Erdjument-Bromage, Hediye; Stephan, Gabriele; Ravn-Boess, Niklas; Wang, Shuai; Liu, Wenke; Bready, Devin; Wilcox, Jordan; Kieslich, Björn; Jankovic, Manuel; Wilde, Caroline; Horn, Susanne; Sträter, Norbert; Liebscher, Ines; Schöneberg, Torsten; Fenyo, David; Neubert, Thomas A; Placantonakis, Dimitris G
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
PMID: 37354459
ISSN: 2211-1247
CID: 5543042