Searched for: person:ringsn01
in-biosketch:yes
Chemosensory detection of polyamine metabolites guides C. elegans to nutritive microbes
Brissette, Benjamin; Ficaro, Lia; Li, Chenguang; Jones, Drew R; Ramanathan, Sharad; Ringstad, Niels
Much is known about molecular mechanisms by which animals detect pathogenic microbes, but how animals sense beneficial microbes remains poorly understood. The roundworm Caenorhabditis elegans is a microbivore that must distinguish nutritive microbes from pathogens. We characterized a neural circuit used by C. elegans to rapidly discriminate between nutritive bacteria and pathogens. Distinct sensory neuron populations responded to chemical cues from nutritive Escherichia coli and pathogenic Enterococcus faecalis, and these neural signals are decoded by downstream AIB interneurons. The polyamine metabolites cadaverine, putrescine, and spermidine produced by E. coli activate this neural circuit and elicit positive chemotaxis. Our study shows how polyamine odorants can be sensed by animals as proxies for microbe identity and suggests that, hence, polyamines might have widespread roles brokering host-microbe interactions.
PMCID:10959419
PMID: 38517971
ISSN: 2375-2548
CID: 5640842
SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals
Zhu, Yunlu; Auer, Franziska; Gelnaw, Hannah; Davis, Samantha N; Hamling, Kyla R; May, Christina E; Ahamed, Hassan; Ringstad, Niels; Nagel, Katherine I; Schoppik, David
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
PMID: 37267107
ISSN: 2211-1247
CID: 5543482
High-fidelity encoding of mechanostimuli by tactile food-sensing neurons requires an ensemble of ion channels
Fok, Alice; Brissette, Benjamin; Hallacy, Tim; Ahamed, Hassan; Ho, Elver; Ramanathan, Sharad; Ringstad, Niels
The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel-TWK-2-that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality-tactile food sensing-emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron.
PMID: 37119137
ISSN: 2211-1247
CID: 5465732
Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit
Choi, Jung-Hwan; Horowitz, Lauren Bayer; Ringstad, Niels
At chemical synapses, neurotransmitters are packaged into synaptic vesicles that release their contents in response to depolarization. Despite its central role in synaptic function, regulation of the machinery that loads vesicles with neurotransmitters remains poorly understood. We find that synaptic glutamate signaling in a C. elegans chemosensory circuit is regulated by antagonistic interactions between the canonical vesicular glutamate transporter EAT-4/VGLUT and another vesicular transporter, VST-1. Loss of VST-1 strongly potentiates glutamate release from chemosensory BAG neurons and disrupts chemotaxis behavior. Analysis of the circuitry downstream of BAG neurons shows that excess glutamate release disrupts behavior by inappropriately recruiting RIA interneurons to the BAG-associated chemotaxis circuit. Our data indicate that in vivo the strength of glutamatergic synapses is controlled by regulation of neurotransmitter packaging into synaptic vesicles via functional coupling of VGLUT and VST-1.
PMID: 34732711
ISSN: 2041-1723
CID: 5038252
Development of specialized sensory neurons engages a nuclear receptor required for functional plasticity
Rossillo, Mary; Ringstad, Niels
During development, the nervous system generates neurons that serve highly specialized roles and, accordingly, possess unique functional attributes. The chemosensory BAG neurons of C. elegans are striking exemplars of this. BAGs sense the respiratory gas carbon dioxide (CO2) and, in a context-dependent manner, switch from mediating avoidance of CO2 to supporting CO2 attraction. To determine mechanisms that support the physiology and plasticity of BAG neurons, we used tandem ChIP-seq and cell targeted RNA-seq to identify gene targets of the transcription factor ETS-5, which is required for BAG development. A functional screen of ETS-5 targets revealed that NHR-6, the sole C. elegans NR4A-type nuclear receptor, is required for BAG-mediated avoidance of CO2 and regulates expression of a subset of BAG-specific genes. Unlike ets-5 mutants, which are defective for both attraction to and avoidance of CO2, nhr-6 mutants are fully competent for attraction. These data indicate that the remarkable ability of BAGs to adaptively assign positive or negative valence to a chemosensory stimulus requires a gene-regulatory program supported by an evolutionarily conserved type of nuclear receptor. We suggest that NHR-6 might be an example of a developmental mechanism for modular encoding of functional plasticity in the nervous system.
PMID: 33184226
ISSN: 1549-5477
CID: 4671912
A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior
Chen, Yen-Chih; Seyedsayamdost, Mohammad R; Ringstad, Niels
Natural products are a major source of small-molecule therapeutics, including those that target the nervous system. We have used a simple serotonin-dependent behavior of the roundworm Caenorhabditis elegans, egg laying, to perform a behavior-based screen for natural products that affect serotonin signaling. Our screen yielded agonists of G protein-coupled serotonin receptors, protein kinase C agonists, and a microbial metabolite not previously known to interact with serotonin signaling pathways: the disulfide-bridged 2,5-diketopiperazine gliotoxin. Effects of gliotoxin on egg-laying behavior required the G protein-coupled serotonin receptors SER-1 and SER-7, and the Gq ortholog EGL-30. Furthermore, mutants lacking serotonergic neurons and mutants that cannot synthesize serotonin were profoundly resistant to gliotoxin. Exogenous serotonin restored their sensitivity to gliotoxin, indicating that this compound synergizes with endogenous serotonin to elicit behavior. These data show that a microbial metabolite with no structural similarity to known serotonergic agonists potentiates an endogenous serotonin signal to affect behavior. Based on this study, we suggest that microbial metabolites are a rich source of functionally novel neuroactive molecules.
PMID: 33199611
ISSN: 1091-6490
CID: 4672482
Insulin-like Peptides as Agents of Social Change
Brissette, Benjamin; Ringstad, Niels
Many behaviors promote reproduction or food finding. These critical functions of behavior can conflict; successful reproductive strategies can grow populations to the point where food is depleted. In this issue of Neuron, Wu et al. (2019) show how the nematode C. elegans detects crowding to change feeding behavior by coupling pheromone sensing to signaling via insulin-like peptides.
PMID: 31951533
ISSN: 1097-4199
CID: 4264022
Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in C. elegans
Horowitz, Lauren Bayer; Brandt, Julia P; Ringstad, Niels
Nervous system development is instructed by genetic programs and refined by distinct mechanisms that couple neural activity to gene expression. How these processes are integrated remains poorly understood. Here, we report that the regulated release of insulin-like peptides (ILPs) during development of the C. elegans nervous system accomplishes such an integration. We find that the p38 MAP kinase PMK-3, which is required for the differentiation of chemosensory BAG neurons, limits an ILP signal that represses expression of a BAG neuron fate. ILPs are released from BAGs themselves in an activity-dependent manner during development, indicating that ILPs constitute an autocrine signal that regulates the differentiation of BAG neurons. Expression of a specialized neuronal fate is, therefore, coordinately regulated by a genetic program that sets levels of ILP expression during development and by neural activity, which regulates ILP release. Autocrine signals of this kind might have general and conserved functions as integrators of deterministic genetic programs with activity-dependent mechanisms during neurodevelopment.
PMID: 31628111
ISSN: 1477-9129
CID: 4140802
Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes
Aydin, Begüm; Kakumanu, Akshay; Rossillo, Mary; Moreno-Estellés, Mireia; Garipler, Görkem; Ringstad, Niels; Flames, Nuria; Mahony, Shaun; Mazzoni, Esteban O
Developmental programs that generate the astonishing neuronal diversity of the nervous system are not completely understood and thus present a major challenge for clinical applications of guided cell differentiation strategies. Using direct neuronal programming of embryonic stem cells, we found that two main vertebrate proneural factors, Ascl1 and neurogenin 2 (Neurog2), induce different neuronal fates by binding to largely different sets of genomic sites. Their divergent binding patterns are not determined by the previous chromatin state, but are distinguished by enrichment of specific E-box sequences that reflect the binding preferences of the DNA-binding domains. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity profiles that differentially shape the binding of downstream transcription factors during neuronal differentiation. This study provides a mechanistic understanding of how transcription factors constrain terminal cell fates, and it delineates the importance of choosing the right proneural factor in neuronal reprogramming strategies.
PMID: 31086315
ISSN: 1546-1726
CID: 3900972
The people behind the papers
Brandt, J; Rossillo, M; Ringstad, N
A fundamental aim in developmental biology is to understand how the various cell types of the body are specified by differential gene regulation. Caenorhabditis elegans nervous system development provides a powerful system for studying this, as exemplified by a new Development paper reporting on how the BAG neurons that help the worm sense oxygen and carbon dioxide are specified. We caught up with first authors Julia Brandt and Mary Rossillo and their supervisor Niels Ringstad (Associate Professor at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology at New York University) to find out more about the story.
EMBASE:2001954099
ISSN: 0950-1991
CID: 3903632